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Abstract

In object detection, bounding box regression (BBR) is a
crucial step that determines the object localization perfor-
mance. However, we find that most previous loss functions
for BBR have two main drawbacks: (i) Both `n-norm and
IOU-based loss functions are inefficient to depict the objec-
tive of BBR, which leads to slow convergence and inaccu-
rate regression results. (ii) Most of the loss functions ig-
nore the imbalance problem in BBR that the large number
of anchor boxes which have small overlaps with the target
boxes contribute most to the optimization of BBR. To mit-
igate the adverse effects caused thereby, we perform thor-
ough studies to exploit the potential of BBR losses in this
paper. Firstly, an Efficient Intersection over Union (EIOU)
loss is proposed, which explicitly measures the discrepan-
cies of three geometric factors in BBR, i.e., the overlap area,
the central point and the side length. After that, we state the
Effective Example Mining (EEM) problem and propose a re-
gression version of focal loss to make the regression process
focus on high-quality anchor boxes. Finally, the above two
parts are combined to obtain a new loss function, namely
Focal-EIOU loss. Extensive experiments on both synthetic
and real datasets are performed. Notable superiorities on
both the convergence speed and the localization accuracy
can be achieved over other BBR losses.

1. Introduction

Object detection, which includes two sub-tasks: object
classification and object localization, is always one of the
most fundamental problems in computer vision. Current
state-of-the-art object detectors (e.g., Cascade R-CNN [2],
Mask R-CNN [9] and Dynamic R-CNN [26]) rely on a
bounding box regression (BBR) module to localize objects.
Based on this paradigm, a well-designed loss function is of
vital importance for the success of BBR. So far, most of loss
functions for BBR fall into two categories:
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Figure 1. Illustrations on the problems of current BBR losses.
Each row shows the optimization results in different iterations with
certain loss function. The Black denotes the anchor box. The Blue
denotes the target box. The fist row denotes GIOU. The second
row denotes CIOU. The third row denotes the proposed EIOU.

• `n-norm losses can be unified as Eq. (1).

L(x) =

{
f(x), if |x| < β,
g(x), otherwise, (1)

where x is the difference between the predicted box
and the target box. Traditional SmoothL1 loss [7]
can be formed as β = 1, f(x) = 0.5|x2|/β and
g(x) = |x|−0.5β. `n-norm losses have been criticized
for not only ignoring the correlations in BBR vari-
ables (x, y, w, h) but also the intrinsic bias to the large
bounding boxes (due to the unnormalized form) [25].
However, previous IOU-based losses, e.g., CIOU and
GIOU, cannot measure the discrepancies between tar-
get box and anchors efficiently, which leads to slow
convergences and inaccurate localizations in optimiza-
tions of BBR models as illustrated in Figure 1.
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• Intersection over Union (IOU)-based losses can be uni-
fied as Eq. (2).

L(B,Bgt) = 1− |B ∩B
gt|

|B ∪Bgt| +R(B,Bgt), (2)

where B and Bgt are the predicted box and the tar-
get box. The penalty term R(B,Bgt) is designed for
the complementary benefit to the original IOU cost.
These losses jointly regress all the BBR variables as
a whole unit. They are also normalized and insensi-
tive to the scales of bounding boxes. However, most of
them suffer from the slow convergence speed and in-
accurate localizations. What’s more, the existing IOU-
based losses neglect the importance of the informative
anchor boxes.

In this paper, we take thorough studies to exploit the
potential of current BBR losses for accurate object detec-
tions. Firstly, an Efficient IOU loss (EIOU) is proposed to
improve the convergence speed and localization accuracy,
which uses an additional penalty term R(B,Bgt) to explic-
itly measure the discrepancies of three key geometric fac-
tors in BBR, including the overlap area, the central point
and the side length. Secondly, we state the Effective Ex-
ample Mining (EEM) problem in BBR. Inspired by the fo-
cal loss [13] originally applied to measure the classification
errors, we design a regression version of focal loss to en-
hance the contributions of high-quality anchor boxes with
large IOUs in the optimization process of BBR models. Fi-
nally, the two proposed methods are combined as a new
BBR loss function, namely Focal-EIOU, for efficient and
accurate object detection. The effectiveness and advantages
of the proposed loss functions are validated by extensive
evaluations on both the synthetic and real datasets. Fur-
thermore, when we incorporate the Focal-EIOU loss with
several state-of-the-art object detection models, including
Faster R-CNN [21], Mask R-CNN [9], RetinaNet [13],
ATSS [27] and PAA [11], consistent and significant im-
provements of detection accuracy can be achieved on the
large scale COCO 2017 dataset [14], which illustrates the
promising potentials of the proposed loss function.

The contributions of this paper can be summarized as
follows:

1. Considering the flaws of the IOU-based losses and `n-
norm losses, we propose an efficient IOU loss to tackle
the dilemma of existing losses and obtain a faster con-
vergence speed and superior regression results.

2. Considering the imbalance between high and low-
quality anchor boxes in BBR,, we design a regression
version of focal loss to enhance contributions of the
most promising anchor boxes in model optimization
while suppress the irrelevant ones’.

3. Extensive experiments have been conducted on both
synthetic and real data. Outstanding experimental re-
sults validate the superiority of the proposed methods.
Detailed ablation studies exhibit the effects of different
settings of loss functions and parameter values .

2. Related Work
In this section, we briefly survey the related work on loss

functions for BBR and the problem of Effective Example
Mining (EEM) in object detection.

2.1. Loss Functions for BBR

The regression of bounding boxes is a crucial step in ob-
ject detection. It aims to refine the location of a predicted
bounding box based on the initial proposal or the anchor
box. Till now, BBR has been used on most of the recent
detection methods [5, 8, 21, 24, 1, 16, 6].

Researchers have spent many efforts in designing loss
functions for BBR. YOLO v1 [20] proposes to predict
the square root of the bounding box size to remedy scale
sensitivity. Fast R-CNN [7] and Faster R-CNN [21] use
SmoothL1 loss function, which is a robust `1 loss that is
less sensitive to outliers than the `2 loss used in R-CNN [8]
and SPPNet [10]. The Dynamic SmoothL1 Loss [26] has
the same f(x) and g(x) (in Eq.(1)) as the SmoothL1 loss,
while it dynamically controls the shape of the loss function
to gradually focus on high-quality anchor boxes. The Bal-
anceL1 loss [17] is proposed to redefine f(x) and g(x) to
obtain larger gradients for inliers, but the gradients of out-
liers are not influenced. However, the `n-norm loss func-
tions mostly assume the four variables of bounding boxes
(x, y, w, h) are independent, which is inconsistent with re-
ality. To address the above problems, the IOU [25] loss
is proposed and it achieves the superior performance on
FDDB benchmark at that time. Further, the Generalized
IOU (GIOU) [22] loss is proposed to address the weak-
nesses of the IOU loss, i.e., the IOU loss will always be zero
when two boxes have no interaction. Recently, the Distance
IOU and Complete IOU have been proposed [28], where the
two losses have faster convergence speed and better perfor-
mance. Pixels IOU [4] increases both the angle and IOU
accuracy for oriented bounding boxes regression.

We address the weakness of existing loss functions, then
propose an efficient loss function for object detection.

2.2. Effective Example Mining

One stage detectors suffer from the imbalance issue,
such as inter-class imbalance between foreground and back-
ground examples. To address this challenge, SSD [15]
adopts hard negative mining, which only keeps a small set
of hard background examples for training. Focal loss [13]
re-weights the background and foreground examples such
that the hard examples are assigned with large weights.
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OHEM [23] presents a simple yet surprisingly effective
online hard example mining algorithm for training region-
based ConvNet detectors. The AP loss [3] and DR loss [19]
transform the classification task into the sorting task, to
avoid the imbalance between negative and positive exam-
ples. In BBR, the imbalance problem still exists, where
most anchor boxes have small overlaps with target boxes.
While only a small quantity of boxes are most informa-
tive for object localization. The most irrelevant boxes with
small IOUs will produce excessively large gradients that are
inefficient for the training of regression models. Libra R-
CNN [17] and Dynamic R-CNN [26] suggest that a well-
regressed bounding box should contribute more gradients in
the model optimization process, based on which they revise
the SmoothL1 loss to re-weight predicted bounding boxes.

However, the revised losses [26, 17] can only increase
gradients of high-quality examples and cannot suppress the
outliers’. Different from the above work, we design a re-
gression version of focal loss to sufficiently exploit the most
promising anchor boxes.

3. Efficient Intersection over Union Loss
In this section, we firstly analyze the drawbacks of ex-

isting popular loss functions and then propose the Efficient
IOU loss.

3.1. Limitations of IOU-Based Losses

In this subsection, we analyze the flaws of three IOU-
based loss functions, i.e, the IOU [25], GIOU [22] and
CIOU [28] loss.

3.1.1 Limitations of IOU Loss

The IOU loss [25] for measuring similarity between two
arbitrary shapes (volumes) A,B ⊆ S ∈ Rn is attained by:

LIOU = 1− |A ∩B||A ∪B| , (3)

which has some good properties, such as non-negativity,
symmetry, triangle inequality and scale insensitivity. It has
been proved to be a metric (by the mathematical defini-
tion [12]). However, it has two major drawbacks:

• If two boxes do not have any intersections, the IOU
loss will be always zero, which cannot reflect the
closeness between this two boxes correctly.

• The convergence speed of the IOU loss is slow.

3.1.2 Limitations of Generalized IOU Loss

The GIOU loss [22] loss is proposed to solve the drawbacks
of the IOU loss and it is defined as follows,

LGIOU = 1− IOU +
|C − (A ∪B)|

|C| , (4)

where A,B ⊆ S ∈ Rn are two arbitrary boxes. C is the
smallest convex box C ⊆ S ∈ Rn enclosing both A and B
and IOU = |A ∩B|/|A ∪B|. The GIOU loss works when
|A ∩B| = 0 while it still has two drawbacks:

• When |A ∩B| = 0, the GIOU loss intends to increase
the bounding box’s area, making it overlap the target
box (see Figure 1), which is opposite to the intuition
that decreasing the discrepancy of spatial positions.

• When |A∩B| > 0, the area of |C−A∪B| is always a
small number or equals zero (when A contains B, this
term will be zero, vice versa). In such a case, the GIOU
loss degrades to the IOU loss. As a consequence, the
converge rate of the GIOU loss is still slow.

3.1.3 Limitations of Complete IOU Loss

The CIOU loss [28] considers three important geometric
factors, i.e., the overlap area, the central point distance and
the aspect ratio. Given a predicted box B and a target box
Bgt, the CIOU loss is defined as follows.

LCIOU = 1− IOU +
ρ2(b,bgt)

c2
+ αv, (5)

where b and bgt denote the central points of B and Bgt re-
spectively. ρ(·) = ||b − bgt||2 indicates the Euclidean dis-
tance. c is the diagonal length of the smallest enclosing box
covering the two boxes. v = 4

π2 (arctan
wgt

hgt − arctan w
h )

2

and α = v
(1−IOU)+v measure the discrepancy of the width-

to-height ratio.
The gradient of v, w.r.t w and h, is calculated as follows.

∂v

∂w
=

8

π2
(arctan

wgt

hgt
− arctan

w

h
) ∗ h

w2 + h2
,

∂v

∂h
= − 8

π2
(arctan

wgt

hgt
− arctan

w

h
) ∗ w

w2 + h2
.

(6)

In the previous work [28], experimental results show
that both the converge speed and detection accuracy of the
CIOU loss have a significant improvement, compared to
previous loss functions. However, v in the last term of
LCIOU is still not well-defined, which slows down the con-
vergence speed of CIOU from three aspects.

• In Eq. (5), v just reflects the discrepancy of aspect ra-
tio, rather than the real relations between w and wgt

or h and hgt. Namely, all the boxes with the property
{(w = kwgt, h = khgt)|k ∈ R+} have v = 0, which
is inconsistent with reality.

• In Eq. (6), we have ∂v
∂w = − h

w
∂v
∂h . ∂v

∂w and ∂v
∂h have

opposite signs. Thus, at any time, if one of these two
variables (w or h) is increased, the other one will de-
crease. It is unreasonable especially when w < wgt

and h < hgt or w > wgt and h > hgt.
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• Since the v only reflects the discrepancy of aspect ra-
tio, the CIOU loss may optimizes the similarity in a
unreasonable way. As shown in Fig. 1, the scales of
the target box are set as wgt = 1 and hgt = 1. The
initial scales of the anchor box are set as w = 1 and
h = 2.4. The anchor box’s scales are regressed to
w = 1.64 and h = 2.84 after 50 iterations. Here, the
CIOU loss indeed increases the similarity of the aspect
ratio, while it hinders the model from reducing the true
discrepancy between (w, h) and (wgt, hgt) efficiently.

3.2. The Proposed Method

To address the above problems, we revise the CIOU loss
and propose a more efficient version of IOU loss, i.e., the
EIOU loss, which is defined as follows.

LEIOU = LIOU + Ldis + Lasp

= 1− IOU +
ρ2(b,bgt)

c2
+
ρ2(w,wgt)

C2
w

+
ρ2(h, hgt)

C2
h

,

(7)
where Cw and Ch are the width and height of the smallest
enclosing box covering the two boxes. Namely, we divide
the loss function into three parts: the IOU loss LIOU , the
distance loss Ldis and the aspect loss Lasp. In this way, we
can retain the profitable characteristics of the CIOU loss. At
the same time, the EIOU loss directly minimizes the differ-
ence of the target box’s and anchor box’s width and height,
which results in a faster converge speed and a better local-
ization result. For a clear demonstration of the superiorities
of the EIOU loss, we perform simulation experiments with
synthetic data as presented in Section 5.3.

4. Focal Loss For BBR

In BBR, the problem of imbalanced training examples
also exists, i.e., the number of high-quality examples (an-
chor boxes) with small regression errors is much fewer than
low-quality examples (outliers) due to the sparsity of target
objects in images. Recent work [17] has shown that the out-
liers will produce excessively large gradients that are harm-
ful to the training process. Thus, it is of vital importance
that making the high-quality examples contribute more gra-
dients to the network training process. As introduced in
Section 2.2, recent studies [17, 26] have attempted to solve
the above problem based on the SmoothL1 loss. In this sec-
tion, we also start with the SmoothL1 loss and propose Fo-
calL1 loss to increase the contribution of high-quality exam-
ples. Furthermore, we find that the simple method cannot
be adapted to the IOU-based losses directly. Hence, we fi-
nally propose Focal-EIOU loss to improve the performance
of the EIOU loss.

4.1. FocalL1 Loss

Firstly, we list the properties of the desirable loss func-
tion as follows.

1. When the regression error goes to zero, the gradient
magnitude should have a limit of zero.

2. The gradient magnitude should increase rapidly
around small regression errors and decrease gradually
in the area of large regression errors.

3. There should be some hyper-parameters to control the
degree of inhibition of low-quality examples flexibly.

4. With variant values of hyper-parameters, the family of
gradient function should have the a normalized scale,
e.g., (0, 1], which facilitates the balancing between
high-quality and low-quality examples.

According to the above conditions, as the change of the re-
gression error of bounding box, we can assume an expected
function curve of gradient magnitude, which is shown in
Figure 3(a). The function is −x lnx, satisfying the proper-
ties 1 and 2. Next, we construct a function family with a
parameter β to control the shape of curves as shown in Fig-
ure 3(b). As β increases, the gradient magnitudes of outliers
will be further suppressed. However, the gradient magni-
tudes of high-quality examples will also decrease, which
is not what we expect. Thus, we add another parameter α
to normalize the gradient magnitudes with different β into
[0, 1] as required by property 4. Finally, the family of gra-
dient magnitude functions can be formulated as follows.

g(x) =
∂Lf
∂x

=

{
−αx ln(βx), 0 < x ≤ 1; 1/e ≤ β ≤ 1,
−α ln(β), x > 1; 1/e ≤ β ≤ 1.

(8)
Here, the value range of β is obtained due to the fol-

lowing reasons.. When x ∈ (0, 1], g′′(x) = −αx ≤ 0,
which means g(x) is a concave function with a global max-
imal value. Solving g′(x) = 0, we can get x∗ = 1

eβ . As
x∗ ∈ (0, 1], 1

eβ ∈ [0, 1]→ β ∈ [1/e,∞]. We also must en-
sure βx ∈ (0, 1], then, β ∈ [1/e, 1]. To satisfy the property
4, we set the maximal value f(x∗) = 1 and get the relation
between α and β: α = eβ.

By integrating the gradient formulation above, we can
get the FocalL1 loss for BBR,

Lf (x) =

{
−αx

2(2 ln(βx)−1)
4 , 0 < x ≤ 1; 1/e ≤ β ≤ 1,

−α ln(β)x+ C, x > 1; 1/e ≤ β ≤ 1,

(9)
where C is a constant value. To ensure Lf in Eq. (9) is
continuous at x = 1, we have C = (2α lnβ + α)/4.

Figure 2(b) shows the proposed FocalL1 loss can in-
crease the value of inliers’ gradients and suppress the value
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Figure 2. Curves for (a) loss and (b) gradient of our FocalL1 loss for bounding box regression.
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Figure 3. Possible gradient curves. (a) The gradient curve that we
expect. (b) Use β to control the curves’ shape.

of outliers’ gradients according to β. A larger β requires
the inliers to have few regression errors and quickly sup-
presses the gradients’value of outliers. Similarly, in Fig-
ure 2(a) the blue curve denotes the maximal value of β.
With the increase of regression error, the loss of the blue
curve first increases rapidly and then tends to be stable. The
orange curve with the minimal β value is growing faster
and faster, reaching its peak around x = 1. Now we can
calculate the localization loss by FocalL1 loss, LLoc =∑
i∈{x,y,w,h} Lf (|Bi − Bgti |), where B is the regression

result and Bgt is the regression target.

4.2. Focal-EIOU Loss

To enable the EIOU loss focus on high-quality exam-
ples, one can naturally consider replacing x in Eq. (9) with
the EIOU loss. However, we observe that the above combi-
nation doesn’t work well. The analysis is as follows.

Given the offset `1(Bi) = |Bi − Bgti |, the gradient of
the FocalL1 loss is ∂Lf (`1(Bi))

∂Bi
=

∂Lf

∂`1
∂`1
∂Bi

, where ∂`1/∂Bi
is a constant equals 1 or −1. Thus, even the offset is
small, ∂Lf/∂`1 can also bring enough gradients to make
the model continuously optimized. However, if we replace
the offset `1(Bi) with LEIOU (B,Bgt), the gradient can be
calculated as ∂Lf

∂LEIOU

∂LEIOU

∂Bi
. Here, the ∂LEIOU/∂Bi is

not a constant value any more. Moreover, it will be very

small in our empirical studies as the LEIOU approaches to
zero, while the ∂Lf/∂LEIOU is also near to zero at that
time. Thus, after the multiplication, the overall gradient will
be even more smaller, which weakens the effect of reweight-
ing on the boxes with small LEIOU . To tackle this problem,
we use the value of IOU to reweight the EIOU loss and get
Focal-EIOU loss as follows

LFocal-EIOU = IOUγLEIOU , (10)

where IOU = |A ∩B|/|A ∪B| and γ is a parameter to
control the degree of inhibition of outliers. We also try other
forms of the reweighting process in Section 5.4.3, while we
find Eq. (10) achieves superior performance.

5. Experiments
5.1. Datasets and Evaluation Metrics

We conduct experiments with both synthetic and real
datasets. For the synthetic data, we conduct two simula-
tion experiments to respectively study the superiorities of
the EIOU and Focal-EIOU loss, as well as the importance
of EEM. As shown in Figure 5(a) , we randomly generate
1000 points within a 20 × 20 box. Each point has a set of
7 × 7 anchors with different aspect ratios ( 1:4, 1:3, 1:2,
1:1, 2:1, 3:1 and 4:1) and different scales (50, 67, 75, 100,
133, 150 and 200). We also have 7 target boxes locating at
(10,10). These target boxes all have a fixed scale 100 but
different aspect ratios ( 1:4, 1:3, 1:2, 1:1, 2:1, 3:1 and 4:1).
To emphasize the importance of EEM, we initialize higher
quality anchors than those in Figure 5(a). As depicted in
Figure 5(b), 100 points are generated within a square whose
center point is (10,10) and the side length is 2.5. Each point
has a set of 3 × 3 anchors with different aspect ratios (1:3,
1:1, 3:1) and different scales (50, 100, 150). Targets boxes
have three aspect ratios (1:3, 1:1, 3:1) and a fixed scale 100.
The simulation algorithm is depicted in Algorithm 1. We
go through all the anchors and regress them to each target.
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Figure 4. Performance of methods with different value of parameters. (a) The EIOU loss with different weights for BBR. (b) The FocalL1
and Focal-EIOU (v1) loss with different β. (c) The Focal-EIOU and Focal-EIOU* loss with different γ.

Algorithm 1 Simulation Experiments
Input: A = 7 or 3 represents simulation setup 1 or setup 2.
{{Bn,s}Ss=1}}Nn=1 denotes all the anchors at N points,
where S = A ∗ A is the number of combinations of
different areas and aspect ratios. {Bgti }Ai=1 is the set of
target boxes in (10, 10) with an area of 100.

Output: IOU I ∈ RT×N×S×A of each target-anchor box
pair and regression error E ∈ RT in each iteration,
where T is the maximal iteration and N is the number
of generated points.

1: (T,E, I)← (200,0,0)
2: for t = 1 to T do
3: for n = 1 to N do
4: for s = 1 to S do
5: for i = 1 to A do
6: if t ≤ 0.8T then µ = 0.1
7: else if t ≤ 0.9T then µ = 0.01
8: else µ = 0.001
9: end if

10: ∇Bt−1n,s = ∂L(Bt−1n,s , B
gt
i )/∂Bt−1n,s

11: Btn,s = Bt−1n,s + µ∇Bt−1n,s

12: E(t) = E(t) + |Btn,s −Bgti |
13: I(t, n, s, i) = IOU(Btn,s, B

gt
i )

14: end for
15: end for
16: end for
17: end for
18: Return E, I

For specific anchor Bn,s and target Bgti , we regress anchor
Bt−1n,s to Btn,s according to the gradient of the loss L w.r.t
Bt−1n,s at iteration t. The performance of the regression pro-
cess is evaluated with `1 loss and IOU metric.

We also present the experimental results on the bound-
ing box detection track of the challenging COCO 2017
dataset [14]. We use the COCO train-2017 split (115k im-

ages) for training and report the ablation studies on the val-
2017 split (5k images). The COCO-style Average Precision
(AP) is chosen as the main evaluation metric.

5.2. Implementation Details

For fair comparisons, all experiments are implemented
with PyTorch [18]. The backbones used in the experiments
are publicly available. For all experiments on COCO 2017
dataset, we use ResNet-50 backbone and run 90k iterations.
We train detectors with 4 GPUs (4 images per GPU), adopt-
ing the stochastic gradient descent (SGD) optimizer with
the initial learning rate 0.01 and decaying it by a factor of
0.1 at 60k and 80k. The default weight for BBR is set to
1.0 for `n-norm losses and 2.5 for IOU-based losses. All
other hyper-parameters follow the settings in ATSS [11] if
not specifically noted.

In order to avoid the slow conver-
gence speed in the early training period due to reweighting,
we use the sum of weights in each batch to normalize the
Focal-EIOU loss. Formally,

LFocal-EIOU =

∑n
i=1Wi · LEIOUi∑n

i=1 Wi
, (11)

where n is the number of anchor-target pairs in each batch.
LEIOUi and Wi are the EIOU loss of anchor-
target pair i and the corresponding weight.

5.3. Simulation Experiments

Figure 6 shows the simulation results when most of the
anchors are low quality examples. It verifies that the EIOU
loss has a faster convergence speed and better regression ac-
curacy than the IOU, GIOU and CIOU losses. Note that, the
regression error of Focal-EIOU loss is larger than the EIOU
loss, which is depicted in Figure 6(a). While in Figure 6(b),
the Focal-EIOU loss is less concerned about hard examples
and these examples bring lots of regression errors for the
Focal-EIOU loss. However, both the number and quality
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Figure 5. Simulation setup: (a) Setup 1: 7 target box and 1000 ×
7× 7 anchors. (b) Setup 2: 3 target box and 100× 3× 3 anchors.
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Figure 6. Simulation experimental results 1: (a) Regression error
sum curves of different loss functions. (2) Variation trend of box
plot of IOU with different loss functions. The Focal-EIOU loss
with parameters γ = 0.5.
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Figure 7. Simulation experimental results 2: (a) Regression error
sum curves of different loss functions. (2) Variation trend of box
plot of IOU with different loss functions. The Focal-EIOU loss
with parameters γ = 0.5.

of high-quality examples of the Focal-EIOU loss are much
higher than the other four kinds of loss functions.

Figure 7 demonstrates the importance of EEM. The
Focal-EIOU loss shows its extraordinary dominance over
other IOU based losses. It not only has the fastest conver-
gence speed and lowest regression error (Figure 7(a)), but
also improves the quality of these high-quality examples at
a speed far beyond other loss functions. Compared with the
EIOU loss, the Focal-EIOU loss has a longer tail, while the
mean value of IOU in Figure 7(b) is much higher. In other
words, although the Focal-EIOU loss has some low-quality
regressed anchors, it indeed has much more high-quality re-
gressed anchors than the EIOU loss.

Methods AP AP50 AP75 APS APM APL

Baseline 35.9 55.2 38.4 21.2 39.5 48.4
IOU 36.5 55.6 38.9 20.9 40.1 48.0

GIOU 36.5 55.6 39.0 20.7 40.2 48.2
CIOU 36.7 55.7 39.2 20.6 40.4 49.0

FocalL1 36.5 55.8 38.9 21.2 39.8 48.8
EIOU 37.0 55.7 39.5 20.7 40.5 49.5

Focal-EIOU (v1) 36.8 55.4 39.5 20.9 40.0 49.1
Focal-EIOU 37.5 56.1 40.0 21.1 40.9 49.8

Table 2. Overall ablation studies on COCO val-2017.

From the above simulation experiments, both the EIOU
and the Focal-EIOU loss have achieved faster convergence
speed. The Focal-EIOU loss has lower localization errors
due to the reweighting on those high-quality examples.

5.4. Ablation Experiments

5.4.1 Ablation Studies on EIOU Loss

We first verify the effects of the weight for BBR, where
the weight here controls the balance between the classifi-
cation loss and BBR loss in object detection. Figure 4(a)
shows that tuning the weight can improve the performance
with gains of 1.1% AP. The performance with a loss weight
larger than 2.5 starts to drop down. These results indicate
that these outliers have a negative impact on the training
process and we do not fully utilize the potential of the model
architecture. We also conduct experiments with the IOU,
GIOU, CIOU and EIOU losses in Table 2. For fair com-
parisons, we set the weight for BBR to 2.5. Experimental
results show that the performance of other IOU-based losses
is inferior to the proposed method.

5.4.2 Ablation Studies on FocalL1 Loss

Setting AP AP50 AP75 APS APM APL

Baseline 35.9 55.5 38.4 21.2 39.5 48.4
BalancedL1 36.3 55.3 38.8 20.5 39.3 48.5

FocalL1 36.5 55.8 38.9 21.2 39.8 48.8

Table 1. Ablation studies of the FocalL1 loss on COCO val-2017.

As shown in Figure 4(b), we test different β of the FocalL1
loss. Generally speaking, setting a larger β will further sup-
press the gradients of low-quality examples, but increase
the gradients of high-quality examples. Finally, we find that
setting β = 0.8 achieves the best trade-off and 36.5% AP,
which is 0.6% higher than the ResNet-50 FPN RetinaNet
baseline. We also reimplement the BalancedL1 loss with
the superior parameters proposed in the previous work [17]
and it brings 0.3% improvement on AP. These experimental
results show that the FocalL1 loss makes the model better.
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Method Backbone AP AP50 AP75 APS APM APL
Faster R-CNN [21] ResNet-50-FPN 37.3 58.2 40.3 21.3 40.9 48.0

Faster R-CNN* ResNet-50-FPN 38.9 59.1 42.4 21.2 41.1 50.2
Mask R-CNN [9] ResNet-50-FPN 38.2 58.8 41.4 21.9 40.9 49.5
Mask R-CNN* ResNet-50-FPN 39.6 59.3 41.7 22.4 41.5 51.1
RetinaNet [13] ResNet-50-FPN 35.9 55.2 38.4 21.2 39.5 48.4

RetinaNet* ResNet-50-FPN 37.5 56.1 40.0 21.3 40.9 49.8
ATSS [27] ResNet-50-FPN 39.1 57.6 42.1 22.9 42.8 51.1

ATSS* ResNet-50-FPN 39.7 57.9 45.7 22.6 43.2 51.8
PAA [11] ResNet-50-FPN 40.3 57.6 43.9 23.0 44.9 54.0

PAA* ResNet-50-FPN 40.8 57.9 44.7 22.9 45.3 54.9

Table 3. The performance when incorporating the Focal-EIOU loss with different SOTA models. * indicates using the Focal-EIOU loss
instead of their original losses.

5.4.3 Ablation Studies on Focal-EIOU Loss.

To illustrate the improvements brought by different methods
for reweighting the EIOU loss, we compare three reweight-
ing methods here. We firstly show that the form of the Fo-
calL1 loss is not suitable, namely using the EIOU loss as
x in Eq. (9). The experimental results are shown in Fig-
ure 4(b). As we mentioned before, applying the FocalL1
loss directly to the EIOU loss leads to the reduction of the
high-quality examples’ gradients, which is not suitable for
and thus cannot improve the performance of the EIOU loss.

We then use the focal loss [13] to reweight the EIOU loss
and get the Focal-EIOU* loss, i.e., LFocal-EIOU∗ = −(1 −
IOU)γ log(IOU)EIOU . Originally, the focal loss works
well when facing the extreme foreground-background class
imbalance. Results in Figure 4(c) show that although we
can gain performance improvements, it quickly decrease
with the increase of γ. The reason is that we cannot sup-
press the gradients of hard examples in such an extreme way
due to their effectiveness in the BBR process.

Finally we evaluate the proposed method in Eq. (10).
Figure 4(c) shows that compared to the focal loss, the pro-
posed method brings more stable improvement. Larger γ
brings stronger suppression on hard examples and may re-
tard the convergence speed. This is also the reason why the
performance is poorer than the baseline when γ = 2.0. We
find that setting γ = 0.5 achieves the best trade-off and use
it as the default value for further experiments.

5.4.4 Overall Ablation Studies

To demonstrate the effectiveness of each proposed compo-
nent, we report the overall ablation studies in Table 2. The
FocalL1 loss improves the box AP from 35.9% to 36.5%.
The EIOU loss brings 1.1% higher box AP than the ResNet-
50 FPN RetinaNet baseline. Directly applying Eq. (9) to the
EIOU loss (namely use the EIOU loss as x in Eq. (9)), we
can get Focal-EIOU (v1) and it doesn’t work well. How-
ever, the Focal-EIOU loss in Eq. (10) brings reasonable

gains, improving the baseline’s AP by 1.6%.

5.5. Incorporations with State-of-the-Arts

In this subsection, we evaluate the Focal-EIOU loss
by incorporating it into popular object detectors includ-
ing Faster R-CNN [21], Mask R-CNN [9], RetinaNet [13],
PAA [11] and ATSS [27]. Results in Table 3 show that
training these models by the Focal-EIOU loss can consis-
tently improve their performance compared to their own
regression losses. Compared to other models, the ATSS
and PAA attain relatively small improvements. There are
two reasons: (i) The ATSS and PAA both use the GIOU
loss with carefully adjusted parameters. These parameters
may not be suitable for the proposed Focal-EIOU loss. (ii)
Both ATSS and PAA have the reweighting processes on
their own loacalization losses ( In PAA, it is the predicted
IOUs with corresponding target box. In ATSS, it is the cen-
terness scores when using the centerness prediction). Al-
though these reweighting methods limit the improvement
brought by the Focal-EIOU loss, they confirm the necessity
of EEM.

6. Conclusion

This paper takes a thorough analysis of BBR for object
detection and find that the potential of the loss function has
not been fully exploited. The first reason is that existing loss
functions all have some drawbacks, hindering the regression
of bounding boxes from being guided correctly. Secondly,
exiting studies mostly neglect the importance of effective
example mining of BBR. Therefore, low-quality examples
contribute excessively large gradients and further limit the
performance of BBR. Based on the observation, we propose
the Focal-EIOU loss to tackle existing losses’ defects and
balance the gradients derived by the high and low-quality
examples. Extensive experiments on both the synthetic and
COCO dataset show that the Focal-EIOU loss brings signif-
icant and consistent improvements with a number of state-
of-the-art models.
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