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Mobile crowd sensing (MCS) is an emerging sensing paradigm that can be applied to build various smart city

and IoT applications. In an MCS application, the participation level of mobile users plays an essential role.

Thus a great many incentive mechanisms have been proposed to motivate users. However, most of these works

focus on the bidding behavior of users and overlook the feature of task requesters. Specifically, there exists a

disparity between the low payment a requester would like to make and the high reward a user would like to

receive. In this work, we address this issue by designing a group-buying-based online incentive mechanism,

which contains two stages: In Stage I, a price learning algorithm is designed to select winning tasks for each

group of sensing tasks, and obtain a competitive total budget for recruiting users. In Stage II, an online auction

is conducted between group agents and online users before a given recruitment deadline. Through theoretical

analysis and extensive evaluations, we show that the proposed mechanisms possess computational efficiency,

individual rationality, budget balance, truthfulness, and good performance.
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1 INTRODUCTION
Mobile crowd sensing (MCS) is a prevalent sensing paradigm that harnesses the proliferation of

smart mobile devices and mobile internet [9, 11]. It has been widely applied to build smart city

and IoT applications, covering almost every aspect of our lives, such as urban traffic information

mapping [16, 21, 24], visual summarization of objects [12, 28], object tracking [15], and environment

monitoring [5, 17].

Sufficient participation is one of the critical factors for the aforementioned MCS systems, laying

the foundation for efficient task allocation [3, 18, 22, 23] and determining whether the systems

can ensure good quality of service. During the time of performing sensing tasks, mobile users

consume various resources, such as battery power and data transmission cost, and endure the

risk of privacy leakage. Hence it is essential to provide them with satisfiable rewards by delicate

incentive design. Noticing this key issue, a great many incentive mechanisms have been proposed
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in the literature [6, 13, 26, 30, 34, 35, 41]. As these works mostly assume that the budget provided

by the MCS platform or task requester is sufficient to attract users to perform sensing tasks, they

focus on the characteristics of users when designing mechanisms.

However, in many MCS scenarios, a requester’s budget for user recruitment may be insufficient

to attract any user to perform a sensing task. For example, a requester may need a real-time photo

of a nearby restaurant before he gets off work to determine whether it is open or not and then

decide whether to eat at that restaurant. Naturally, the requester is unwilling to pay a lot for this

photo (it is unacceptable if it costs more than his lunch). From the perspective of a user, he may

be far away from this restaurant and needs to walk a long distance to complete the task before a

certain deadline. Hence, the user expects to receive a relatively high reward for completing such

tasks. Due to this disparity between the requester’s expected budget and the user’s expected reward,

no user is likely to perform the small sensing task and the requester cannot obtain the expected

sensing data.

To address the above issue, in this work, we propose a new group-buying-based online incentive

framework where both requesters and users are effectively motivated to participate in MCS. Inspired

by group buying services on the radio spectrum sharing [20, 31], we assume that tasks with the

similar location requirement can be automatically grouped to obtain and share sensing capabilities

of users. For example, some requesters are interested in crowdedness information of multiple

nearby restaurants at lunch time and thus publish corresponding sensing tasks. These tasks can

be grouped as a big task and be completed by a suitable user. In this way, the budgets of tasks in

one group can be aggregated to form a total budget that is high enough to attract mobile users,

although the budget of each single task is too low to recruit a user.

In our online incentive framework, we consider that there is an agent in each group as a

representative. The agent runs a mechanism to decide which tasks should be incorporated (these

tasks are termed as winning tasks) and collect their budgets as the group’s budget. Whenever one

user arrives, the MCS platform should make an immediate decision on whether the user should

be recruited. If the platform decides to recruit this user, it also needs to decide which agent he is

assigned to and how much money he is paid. At the same time, each winning agent will charge the

winning tasks in his group for the payment.

Although group-buying-based mechanisms have been studied in spectrum auctions [20, 31] and

a similar concept “task bundling scheme” has been proposed and used by some existing works in

MCS [25, 29], no existing mechanism can be directly applied to our scenario and the following

characteristics make our work challenging.

First, most works related to group buying do not take into account the online arrival of users,

while in our scenario, we assume users arrive one by one online in a random order. Once a user

arrives, we need to make an irrevocable decision on whether to accept the user’s bid. It is a

challenging task without knowing future information.

Second, a well-designed incentive mechanism needs to guarantee the crucial property of truth-

fulness, with which we can prevent users from disrupting the market through strategic untruthful

bidding. Most existing works assume fixed budgets for sensing tasks, and only consider the bidding

behaviors of users when designing truthful mechanisms. On the contrary, in the MCS system

studied in this work, task requesters and online users can both bid freely. It is more complicated to

design a double truthful mechanism, which ensures both users and requesters are truthful at the

same time.

To accommodate the above challenges, we propose a two-stage incentive mechanism termed

GMZ where the user’s arrival time equals his departure time. The main idea of GMZ is as follows. In

Stage I, nearby tasks form different groups. To increase the budget for each group’s agent, we design

a price learning algorithm PLnG. Given a set of candidate prices, PLnG chooses one price with
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a certain probability to evaluate each task and makes decisions accordingly. Each evaluated task

will then serve as a sample to update the probability for selecting each candidate price. Through

continuous learning, the algorithm will soon find a near-optimal evaluation price. In Stage II, users

submit their bids upon arrival. To improve the platform’s utility and ensure the truthfulness of

users, we design a price learning algorithm PLnZ for determining winning user-agent pairs, which

adopts a similar framework as PLnG. We then revise the GMZ mechanism and propose a more

general GMNZ mechanism where users’ have non-zero arrival-departure time intervals. GMNZ

ensures that the user not only reports his bidding price truthfully, but also reports his true arrival

time and departure time. Through theoretical analysis and extensive evaluations, we show that

the proposed mechanisms possess computational efficiency, individual rationality, budget balance,

truthfulness, and good performance.

The remainder of this paper is organized as follows: Section 2 presents the related work. In

Section 3, we describe the system model and formulate the problem as a two-stage auction. We then

present the group-buying-based online mechanisms GMZ and GMNZ in Section 4 and Section 5,

respectively. In Section 6, we present the evaluation results. Finally, we conclude this paper in

Section 7.

2 RELATEDWORK
Research efforts have been made to develop various incentive mechanisms for MCS systems [37].

Among the different forms of incentive mechanisms, reverse auction-based mechanisms are studied

comprehensively [6, 13, 26, 30, 34, 35, 39, 41]. These mechanisms focus on the user’s strategic

behavior in the MCS system and mostly assume that the budget for recruitment is sufficient. Our

work differs from these works in that we observe the necessity of cooperation of task requesters

with small budgets and thus propose a new incentive mechanism framework for MCS, which jointly

considers the behaviors of requesters and users.

Considering double auction, Deshmukh et al. [7] proposed a technique to convert basic auctions

into double auctions, ensuring the truthfulness of both sellers and buyers at the same time. Feng et
al. [8] designed TAHES based on double auction considering the spatial heterogeneity of spectrum.

Zhai et al. [32] proposed a mechanism based on double auction to improve networks’ benefit with

high energy efficiency. Zhang et al. [33] proposed a double auction mechanism to ensure fair service

trading considering applications of proximity-based mobile crowd services.

Furthermore, online auction is also considered in this paper. Blum et al. [2] designed competitive

algorithms for the online market to efficiently match buying and selling bids without future

information. Then they used an online learning algorithm in the auction and obtained a more

efficient result [1]. Zhao et al. [41] proposed two mechanisms based on the online auction model,

aiming to maximize the utility of the platform. Wei et al. [27] considered that both users and

providers are dynamic and proposed truthful mechanisms based on online auction. Compared

with these works, our work addresses the incentive mechanism design problem with three parties

(i.e., requesters, agents, and mobile users) in MCS and considers the online arrival of users. The

above-mentioned works cannot be directly applied to our scenario.

Group buying scheme is recently considered when designing spectrum auctions in cognitive radio

networks and incentive mechanisms in MCS. To efficiently tackle the issue that an individual user

cannot afford an integral spectrum channel, Lin et al. [20] proposed a novel three-stage mechanism

TASG based on group buying. Huang et al. [14] extended TASG for MCS and proposed TGBA to

tackle the mismatch of requesters’ small budgets and workers’ high prices. In addition, a similar

concept “task bundling” is also used in MCS. To address the imbalance of user participation, Wang et
al. [25] proposed a truthful incentive mechanism based on task bundling. Xie et al. [29] proposed a

mechanism combining “task bundling scheme” and “rating system”, which optimizes the system
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efficiency considering a service delay. Although the aforementioned works used the concept of

“task bundling scheme" in different scenarios and tackled different problems, these mechanisms

cannot adapt to our scenario where we not only need requesters to share the payment for users,

but also aim to guarantee all participants’ truthfulness and make good decisions whenever the

users arrive.

3 SYSTEMMODEL
In this section, we first describe the group-buying scenario in MCS and formulate the problem of

recruiting online mobile users as a two-stage auction. Then, we introduce the desired properties

for incentive mechanisms in MCS.
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Fig. 1. A two-stage auction framework.

3.1 Problem Formulation
Figure 1 illustrates a group-buying scenario consisting of task requesters, agents, mobile users, and

a platform:

• Each requester can submit a sensing task at a time. As each requester’s budget is insufficient

to recruit a user with a relatively high price, tasks form different groups in order to use an

accumulated budget to recruit users.

• An agent is a virtual object generated by the platform (such as programs run by the platform),

which acts as a representative for a group of tasks. The agents determine the winning tasks

in each group, collect the budget of the tasks and report this information to the platform

truthfully.

• Mobile users act as workers who are interested in performing sensing tasks and their in-

formation is unknown to the platform until they arrive at the area of interest and contact

with the platform online. Upon arrival, the user negotiates with the platform for selling his

sensing capability.
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• The MCS platform, which resides in the cloud, is responsible for determining the winning

user-agent pairs such that the sensing tasks can be assigned to suitable users and at the same

time it achieves a high utility.

Mathematically, we consider that there are 𝑛 groups of sensing tasks G = {G1,G2, ...,G𝑛}, which
should be assigned before a specified deadline 𝐷 [19, 41, 42].

Each group has a virtual agent (Hereinafter referred to as agent) and thus there are 𝑛 agents

A = {𝑎1, 𝑎2, ..., 𝑎𝑛}. Note that these agents are not selected from requesters. They are virtual

objects generated by the platform and are responsible for task selection and information collection.

Therefore, they do not possess the property of utility and do not need to involve the property of

truthfulness. In the group G𝑗 , there are 𝑛 𝑗 tasks G𝑗 = {𝑡1𝑗 , 𝑡2𝑗 , ..., 𝑡
𝑛 𝑗

𝑗
}. A task 𝑡𝑘𝑗 ∈ G𝑗 is identified

by the tuple (𝑏𝑘𝑗 , 𝑣𝑘𝑗 , 𝑝𝑘𝑗 , 𝜇𝑘𝑗 ), where the budget 𝑏𝑘𝑗 is the task’s maximum payment for the sensing

data, the valuation 𝑣𝑘𝑗 is the value of the sensing data that is only known to the task’s requester

himself, the payment 𝑝𝑘𝑗 is the reward given to the platform for completing the task, and 𝜇𝑘𝑗 reflects

the requester’s utility for participating in the auction. A crowd of mobile usersU = {𝑢1, 𝑢2, ..., 𝑢𝑚}
would like to perform sensing tasks. The user 𝑢𝑖 ∈ U is associated with the tuple (𝑣𝑖 , 𝑟𝑖 , 𝜇𝑖 , 𝜏𝑖 , 𝑑𝑖 ),
where the reserved price 𝑣𝑖 reflects the cost for performing sensing tasks and is only known to

the user. The user can set different reserved prices based on his current condition, such as the

traveling cost and battery consumption. The reward 𝑟𝑖 is the payment received from the platform

for completing sensing tasks, 𝜇𝑖 is the user’s utility for participating in the auction, 𝜏𝑖 ∈ {1, 2, ..., 𝐷}
and 𝑑𝑖 ∈ {1, 2, ..., 𝐷} are the user’s true arrival time and true departure time, respectively. Each

user is assumed to be game-theoretic. To maximize the utility, the user may strategically report a

bidding price 𝑠𝑖 deviating from his reserved price or report an untruthful arrival time 𝜏𝑖 and a fake

departure time 𝑑𝑖 subject to 𝜏𝑖 ≤ 𝜏𝑖 ≤ 𝑑𝑖 ≤ 𝑑𝑖 [36, 38, 41]. We assume that a user serves for at most

one group of tasks here, since the tasks in each group are usually spatially clustered and thus are

convenient for the user to complete.

We model the interaction between different characters as a two-stage auction. In Stage I, we

assume that tasks are independent of each other, and we use the K-means algorithm to divide tasks

into different groups based on their geographic locations. The number of tasks in each group cannot

exceed the maximum group capacity𝑀 , which depends on the task’s timeliness requirement. For

example, in [4], the photo-taking task needs sufficient space-time complexity and hence𝑀 can be

set to a large value. Conversely, if a task requires a quick response, then𝑀 should be set to a small

value. After grouping tasks, a virtual agent is generated by the platform to represent the group for

participating in Stage II. Then, the requester of the task 𝑡𝑘𝑗 submits his budget to the agent 𝑎 𝑗 . The

agent 𝑎 𝑗 will decide the set of winning tasksW𝑗 and obtain the budget 𝑏 𝑗 accordingly.

In Stage II, we recruit users before a recruitment deadline𝐷 . At first, a set of budgets {𝑏1, 𝑏2, ..., 𝑏𝑛}
are submitted by agents and each arriving user submits his bid 𝑠𝑖 to the platform. The platform

then makes an irrevocable decision on whether to accept the user’s bid and which agent should

be matched to this accepted user. Finally, the matching result Λ = {(𝑢𝑖 , 𝑎 𝑗 ) |𝑖 ∈ {1, 2, ...,𝑚}, 𝑗 ∈
{1, 2, ..., 𝑛}} is generated. LetΛ𝑢 = {𝑢𝑖 | (𝑢𝑖 , 𝑎 𝑗 ) ∈ Λ} denote thematched users andΛ𝑎 = {𝑎 𝑗 | (𝑢𝑖 , 𝑎 𝑗 ) ∈
Λ} denote the matched agents. If the agent 𝑎 𝑗 is successfully matched with a user (i.e., 𝑎 𝑗 ∈ Λ𝑎),

the corresponding winning tasks inW𝑗 will receive the sensing data and each task 𝑡𝑘𝑗 ∈ W𝑗 will

be charged an amount of 𝑝𝑘𝑗 . Thus the utility of a task 𝑡𝑘𝑗 ∈ G𝑗 is defined as:

𝜇𝑘𝑗 =

{
𝑣𝑘𝑗 − 𝑝𝑘𝑗 , 𝑡𝑘𝑗 ∈ W𝑗 and 𝑎 𝑗 ∈ Λ𝑎,

0, otherwise.
(1)
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Table 1. Main Notations

Symbol Description

U, 𝑢𝑖 ,𝑚 set of users, 𝑖th user and number of users

G,G𝑗 , 𝑛, 𝑛 𝑗 set of groups, 𝑗th group, number of group, number of tasks in the 𝑗th group

A, 𝑎 𝑗 , 𝑏 𝑗 set of agents, 𝑗th agent, agent 𝑎 𝑗 ’s budget

𝑡𝑘𝑗 ,W𝑗 𝑘th task and set of winners in 𝑗th group

𝑣𝑘𝑗 , 𝑏
𝑘
𝑗 , 𝑝

𝑘
𝑗 , 𝜇

𝑘
𝑗 task 𝑡𝑘𝑗 ’s valuation, budget, payment and utility

𝑣𝑖 , 𝑠𝑖 , 𝑟𝑖 , 𝜇𝑖 user 𝑢𝑖 ’s reserved price, bid, reward and utility

𝜏𝑖 , 𝜏𝑖 , 𝑑𝑖 , 𝑑𝑖 user 𝑢𝑖 ’s true arrival time, reported arrive time, true departure time, and

reported departure time

𝐷,𝑑 deadline in Stage II and one time step

𝛼, 𝛽 learning rate and interval span

𝑙, ℎ lowest and highest budgets for tasks or bids for users

Λ matching between users and agents

𝑀 maximum group capacity

For the user 𝑢𝑖 ∈ Λ𝑢 , he will be given a reward 𝑟𝑖 which is not smaller than his bid. The utility is

the difference of his reward and his reserved price. If 𝑢𝑖 ∉ Λ𝑢 , his utility will be 0. Therefore, the

utility of 𝑢𝑖 can be defined as:

𝜇𝑖 =

{
𝑟𝑖 − 𝑣𝑖 , 𝑢𝑖 ∈ Λ𝑢,

0, otherwise.
(2)

For a matching pair (𝑢𝑖 , 𝑎 𝑗 ) ∈ Λ, the agent 𝑎 𝑗 will hire the user 𝑢𝑖 to collect sensing data and the

platform’s utility is defined as the difference of agents’ budgets and users’ rewards:

𝜇 =
∑

𝑎 𝑗 ∈Λ𝑎

𝑏 𝑗 −
∑

𝑢𝑖 ∈Λ𝑢

𝑟𝑖 . (3)

Note that for each (𝑢𝑖 , 𝑎 𝑗 ) ∈ Λ, the value of 𝑏 𝑗 must be not smaller than the value of 𝑟𝑖 , which

ensures that the utility of the platform is nonnegative.

Table 1 lists frequently used notations.

3.2 Desirable Properties
In this work, our purpose is to design group-buying-based two-stage incentive mechanisms, which

are expected to satisfy the following properties.

• Computational Efficiency: An incentive mechanism is computationally efficient if it re-

turns the result in polynomial time.

• Individual Rationality: A mechanism is individually rational if the utility of each partici-

pant is nonnegative. The proposed mechanisms should ensure that users and task requesters

are all rational. In other words, Eq. (1) and Eq. (2) should have nonnegative results.

• Budget Balance: A mechanism is budget balanced if the utility of the auctioneer (i.e., the

platform here) is nonnegative.

• Truthfulness: A mechanism is truthful if a bidder cannot improve his utility by submit-

ting a bidding information deviating from his true information. Here, the bidders include
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requesters and online-arriving users. If the requester cannot improve his utility by misre-

porting his budget and the user’s dominant strategy is reporting his true reserved price, true

arrival/departure time, then the two-stage mechanism is truthful.

4 ONLINEMECHANISM UNDER ZERO ARRIVAL-DEPARTURE INTERVAL SCENARIO
In this section, we propose a two-stage Group-buying-based online incentiveMechanism under

the Zero arrival-departure interval scenario (GMZ), where the arrival time of each user is equal to

his departure time.

4.1 Stage I
In Stage I, the agent of each group runs an auction to select a subset of tasks in the group and

determines the group’s budget for recruiting users in Stage II. The key challenge here is how

to maximize the agent’s obtained budget, as a higher budget indicates a higher probability of

successfully recruiting a user in Stage II. Some existing works consider that the idea of maximizing

the agent’s budget could result in untruthful bids of task requesters. Therefore they usually use

some relatively random algorithms, such as the SAMU algorithm in [20] and the SUCP algorithm

in [14]. Differently, we design a learning-based algorithm that tries to maximize the budget for

each agent strategically and, at the same time, maintain the truthfulness of requesters.

Algorithm 1 sketches the designed PLnG algorithm in Stage I. We first initialize the learning

rate 𝛼 , the interval span 𝛽 , and the clearing price 𝑐 , respectively. Let 𝑙 and ℎ be the lowest and

highest possible budgets of all tasks, respectively. For any task 𝑡𝑘𝑗 , we have 𝑏
𝑘
𝑗 ∈ [𝑙, ℎ]. Let �̂� denote

the largest index such that 𝑙 (1 + 𝛽)�̂� < ℎ and we then generate a set of candidate fixed prices

𝑋 = {𝑙 (1 + 𝛽)𝜎 |𝜎 = 1, 2, ..., �̂�} according to the value of 𝛽 . In other words, 𝑋 consists of all powers

of (1 + 𝛽) between 𝑙 to ℎ (Lines 2-3).

To clearly explain how our algorithm works, we first need to introduce the optimal single-price

auction in [10]. Assume that b is a sorted array of budgets in nonincreasing order, and |b| denotes
the length of b. Let Φ(b) denote the profit of the optimal single-price auction, which is defined by:

Φ(b) = max

1≤ 𝑗≤ |b |
𝑗𝑏 𝑗 , (4)

where 𝑏 𝑗 denotes the 𝑗th budget in b.
In PLnG, the optimal price 𝑏 𝑗∗ ( 𝑗∗ = argmax1≤ 𝑗≤ |b | 𝑗𝑏 𝑗 ) is rounded to the nearest 𝑙 (1 + 𝛽)𝜎 for

the integer 𝜎 and we want to learn the approximate price in the candidate set𝑋 . The value of 𝛽 thus

determines how close the price we learn can be to the optimal price. With a smaller 𝛽 , there will be

more candidate prices, and the optimal price can be better approximated. But it also increases the

cost of learning.

Each candidate price 𝑥𝜎 ∈ 𝑋 maintains two parameters: given the evaluated set of tasks {𝑡1𝑗 , ..., 𝑡𝑘𝑗 },
𝑟𝜎 (𝑘) represents the total budget that the agent can obtain by choosing 𝑥𝜎 as the evaluation price;

𝑤𝜎 (𝑘) is the weight of 𝑥𝜎 after evaluating the first 𝑘 tasks, which will affect the agent’s probability

of choosing 𝑥𝜎 for evaluation (Lines 5-7). For any task 𝑡𝑘𝑗 in the group G𝑗 , we choose a price 𝑐 = 𝑥𝜎

with the probability
𝑤𝜎 (𝑘−1)∑�̂�

𝜎′=1 𝑤𝜎′ (𝑘−1)
to evaluate this task. If 𝑡𝑘𝑗 ’s budget 𝑏

𝑘
𝑗 is larger than 𝑐 , he will be

a winner and make a payment 𝑝𝑘𝑗 = 𝑐; Otherwise, he loses and pays nothing (Lines 13-14). After

evaluating one task, we use it as a sample for parameter update (Lines 15-23). For each candidate

price 𝑥𝜎 ∈ 𝑋 , let 𝑔𝜎 (𝑘) be the agent’s budget obtained from the 𝑘th task. If the task’s budget is

larger than 𝑥𝜎 , 𝑔𝜎 (𝑘) will be set to 𝑥𝜎 ; Otherwise, 𝑔𝜎 (𝑘) will be set to 0. Then we use the cumulative

sum to update 𝑟𝜎 (𝑘) and update 𝑤𝜎 (𝑘) according to 𝑟𝜎 (𝑘). This update method guarantees the
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8 Yifan Zhang and Xinglin Zhang

Algorithm 1 PLnG: Price Learning algorithm for determining the budget and winners for all

Groups

Input: Each group’s budget vector b𝑗 = {𝑏𝑘𝑗 ∈ [𝑙, ℎ] | 𝑘 = 1, ..., |G𝑗 |}, the learning rate 𝛼 ≥ 𝑒 − 1,
and the interval span 𝛽 ∈ (0, 1].

Output: Each agent’s budget 𝑏 𝑗 and each group’s set of winning tasksW𝑗 .

1: 𝑐 ← 0;

2: Let �̂� denote the largest index such that 𝑙 (1 + 𝛽)�̂� < ℎ;

3: 𝑋 ← {𝑙 (1 + 𝛽)𝜎 |𝜎 = 1, 2, ..., �̂�};
4: for 𝑗 = 1 to 𝑛 do
5: for 𝜎 = 1 to �̂� do
6: 𝑟𝜎 (0) ← 0;𝑤𝜎 (0) ← 1;

7: end for
8: for 𝑘 = 1 to 𝑛 𝑗 do:
9: Set 𝑐 ← 𝑥𝜎 with probability

𝑤𝜎 (𝑘−1)∑�̂�
𝜎′=1 𝑤𝜎′ (𝑘−1)

;

10: if 𝑏𝑘𝑗 ≥ 𝑐 then
11: 𝑝𝑘𝑗 ← 𝑐;W𝑗 ←W𝑗 ∪ {𝑡𝑘𝑗 };
12: else
13: 𝑝𝑘𝑗 ← 0;

14: end if
15: for 𝜎 = 1 to �̂� do
16: if 𝑏𝑘𝑗 ≥ 𝑥𝜎 then
17: 𝑔𝜎 (𝑘) ← 𝑥𝜎 ;

18: else
19: 𝑔𝜎 (𝑘) ← 0;

20: end if
21: 𝑟𝜎 (𝑘) ← 𝑟𝜎 (𝑘 − 1) + 𝑔𝜎 (𝑘);
22: 𝑤𝜎 (𝑘) ← (1 + 𝛼)𝑟𝜎 (𝑘)/ℎ ;
23: end for
24: end for
25: end for

good competitiveness of our algorithm. Here we give a simple example to further illustrate the

idea of PLnG.

10 98

tj
1

tj
2

tj
3

Budget

{r1,r2,r3 }

{w1,w2,w3 }

c 7.2

{6,7.2,0 }

{1.5,1.6,1 }

6

{12,14.4,8.6 }

{2.3,2.7,2 }

5

tj
4

8.6

{18,21.6,17.2 }

{3.5,4.5,3.3}

7.2

{18,21.6,17.2 }

{3.5,4.5,3.3 }

Fig. 2. An illustrative example of running PLnG.
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Example 1. As shown in Figure 2, there are 4 tasks in the group G𝑗 . We first get the lowest and
highest budgets 𝑙 = 5, ℎ = 10. Assume 𝛼 = 1, 𝛽 = 0.2 and we can obtain the largest index �̂� = 3 such
that 5 ∗ 1.23 < 10 and 5 ∗ 1.24 > 10. Then we generate the candidate price set 𝑋 = {5 ∗ 1.2𝜎 |1 ≤
𝜎 ≤ �̂�} = {6, 7.2, 8.6}. At the beginning of the outer for-loop of PLnG, we have three candidate prices
𝑥1 = 6, 𝑥2 = 7.2, 𝑥3 = 8.6 and we initialize their corresponding parameters 𝑟1 (0) = 𝑟2 (0) = 𝑟3 (0) = 0

and 𝑤1 (0) = 𝑤2 (0) = 𝑤3 (0) = 1. First, 𝑡1𝑗 will be evaluated and one of the candidate price will be
chosen as the clearing price 𝑐 . The probability of selecting these three candidate prices at this time are
all 1

3
. Assume that PLnG sets 𝑐 = 7.2. As 𝑏1𝑗 = 8 > 7.2, 𝑡1𝑗 will be a winner. From Lines 15-23, as 𝑏1𝑗 = 8 >

𝑥1 = 6, we have 𝑔1 (1) = 6. And we can update 𝑟1 (1) = 𝑟1 (0) +6 = 6,𝑤1 (1) = (1+1)𝑟1 (1)/ℎ = 2
0.6 = 1.5.

Similarly, we update 𝑟2 (1) = 0 + 7.2 = 7.2, 𝑟3 (1) = 0 + 0 = 0 and𝑤2 (1) = 2
0.72 = 1.6,𝑤3 (1) = 1. Then

we evaluate 𝑡2𝑗 , whose budget is 10. Now we have probability 1.5
1.5+1.6+1 = 0.36 to set 𝑐 = 𝑥1. Accordingly,

we set 𝑐 = 𝑥2 with probability 0.39 and set 𝑐 = 𝑥3 with probability 0.24. Assume that we set 𝑐 = 𝑥1 = 6

which is smaller than 𝑏2𝑗 , then 𝑡
2

𝑗 is a winner. Similarly, we update each candidate price’s parameters
𝑟𝜎 (2) = 𝑟𝜎 (1) +𝑔𝜎 (2) and𝑤𝜎 (2) = 2

𝑟𝜎 (2)/10. The subsequent calculation results are shown in Figure 2.

4.2 Stage II
After determining the winners and the total budget of each group, in Stage II, a double auction is

performed between users and agents, aiming at maximizing the platform’s utility. The challenge

here is how to make a decision upon each user’s arrival and ensure his truthfulness.

Algorithm 2 depicts the PLnZ algorithm for Stage II. We first sort the budget vector in descending

order and find the index 𝑛∗ such that 𝑛∗𝑏𝑛∗ is maximized (Line 1). Then we initialize parameters

𝛼 , 𝛽 , 𝑐 and 𝑚∗ (Line 2). We generate the set of candidate prices 𝑋 = {𝑙 (1 + 𝛽)𝜎 |𝜎 = 1, 2, ..., �̂�}
similar to PLnG, where 𝑙/ℎ is the lowest/highest possible bid of users (Lines 3-4). For each 𝑥𝜎 ∈ 𝑋 ,

we maintain two parameters 𝑟𝜎 (𝑖) and𝑤𝜎 (𝑖), where 𝑟𝜎 (𝑖) denotes the total profit by using 𝑥𝜎 to

evaluate the sequence {𝑢1, 𝑢2, ..., 𝑢𝑖 } and𝑤𝜎 (𝑖) is 𝑥𝜎 ’s weight (Lines 5-7). Note that the evaluation
sequence here is a set of users. At each time step 𝑑 , if we have selected 𝑛∗ users, the algorithm halts

and returns the matching result (Lines 10-12). Otherwise, if there arrives one user, we set 𝑐 = 𝑥𝜎

with the probability
𝑤𝜎 (𝑖−1)∑�̂�

𝜎′=1 𝑤𝜎′ (𝑖−1)
to be the price for evaluating this user. If the user’s bid 𝑠𝑖 ≤ 𝑐 ,

he will be selected and given a reward 𝑐 . In other cases, his reward will always be 0 (Lines 14-17).

After that, he will be matched with a group by the function𝑀𝑎𝑡𝑐ℎ(𝑖,Λ), which returns the matched

agent’s index according to the historical matching result Λ and the user 𝑢𝑖 ’s information. In this

paper, we calculate each group’s center point and match the user with the group that is closest to

him and is not assigned. Finally, we update the parameters according to this user’s bid (Lines 18-25).

This process is similar to PLnG. The difference is that, for each 𝑥𝜎 ∈ 𝑋 , if the arriving user can

be selected when we use 𝑥𝜎 for evaluation, the profit 𝑔𝜎 (𝑖) brought by 𝑢𝑖 will be ℎ − 𝑥𝜎 . Setting
𝑔𝜎 (𝑖) = ℎ − 𝑥𝜎 instead of 𝑔𝜎 (𝑖) = 𝑥𝜎 tends to give less reward.

4.3 Theoretical Analysis
Here, we analyze the properties of GMZ.

4.3.1 The Analysis of Stage I.

Lemma 1. PLnG is computationally efficient.

Proof. The innermost for-loop (Lines 15-23) of PLnG is bounded by 𝑂 (�̂�). The middle for-loop

(Lines 8-24) is bounded by 𝑂 (𝑛 𝑗 ). Since 𝑛 𝑗 ≤ 𝑀 , it is also bounded by 𝑂 (𝑀). Finally, the outermost

for-loop (Lines 4-25) is bounded by 𝑂 (𝑛). In summary, we can conclude that PLnG is bounded by

𝑂 (�̂�𝑛𝑀). □
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Algorithm 2 PLnZ: Price Learning algorithm for matching agents and users under Zero arrival-

departure interval scenario.

Input: Agents’ budget vector b = {𝑏 𝑗 ∈ [𝑙, ℎ] | 𝑗 = 1, 2, ..., 𝑛} in descending order, the learning rate

𝛼 ≥ 𝑒 − 1, the interval span 𝛽 ∈ (0, 1], each arriving user’s arrival time 𝜏𝑖 and bidding price 𝑠𝑖 .

Output: A matching between online users and agents Λ and the corresponding reward.

1: 𝑛∗ ← argmax1≤ 𝑗≤𝑛 𝑗𝑏 𝑗 ;ℎ ← 𝑏𝑛∗ ;

2: 𝑐 ← 0;𝑚∗ ← 0;

3: Let �̂� denote the largest index such that 𝑙 (1 + 𝛽)�̂� < ℎ;

4: 𝑋 ← {𝑙 (1 + 𝛽)𝜎 |𝜎 = 1, 2, ..., �̂�};
5: for 𝜎 = 1 to �̂� do
6: 𝑟𝜎 (0) ← 0;𝑤𝜎 (0) ← 1;

7: end for
8: while 𝑑 ≤ 𝐷 do
9: while there is a user 𝑢𝑖 arriving at time step 𝑑 do
10: if 𝑚∗ = 𝑛∗ then
11: halt and return the result;

12: end if
13: Set 𝑐 ← 𝑥𝜎 with probability

𝑤𝜎 (𝑖−1)∑�̂�
𝜎′=1 𝑤𝜎′ (𝑖−1)

;

14: if 𝑠𝑖 ≤ 𝑐 then
15: 𝑟𝑖 ← 𝑐;𝑚∗ ←𝑚∗ + 1;Λ← Λ ∪ {(𝑖, 𝑀𝑎𝑡𝑐ℎ(𝑖,Λ))};
16: else 𝑟𝑖 ← 0;

17: end if
18: for 𝜎 = 1 to �̂� do
19: if 𝑠𝑖 ≤ 𝑥𝜎 then
20: 𝑔𝜎 (𝑖) ← ℎ − 𝑥𝜎 ;
21: else 𝑔𝜎 (𝑖) ← 0;

22: end if
23: 𝑟𝜎 (𝑖) ← 𝑟𝜎 (𝑖 − 1) + 𝑔𝜎 (𝑖);
24: 𝑤𝜎 (𝑖) ← (1 + 𝛼)𝑟𝜎 (𝑖)/ℎ ;
25: end for
26: end while
27: 𝑑 ← 𝑑 + 1;
28: end while

Lemma 2. PLnG is individually rational.

Proof. Consider that 𝑡𝑘𝑗 ∉W𝑗 or 𝑎 𝑗 ∉ Λ𝑎 , from Eq. (1), the utility of 𝑡𝑘𝑗 will be 0. Otherwise, the

requester’s payment will be 𝑝𝑘𝑗 = 𝑐 (Line 11 in Algorithm 1). Note that 𝑏𝑘𝑗 ≥ 𝑐 = 𝑝𝑘𝑗 if the requester

reports his true valuation, i.e., 𝑏𝑘𝑗 = 𝑣𝑘𝑗 . Hence we have 𝑏
𝑘
𝑗 − 𝑝𝑘𝑗 ≥ 0, which completes our proof. □

Lemma 3. PLnG is truthful for task requesters.

Proof. Given a task 𝑡𝑘𝑗 , if its agent 𝑎 𝑗 loses in Stage II, then 𝜇𝑘𝑗 will always be 0 regardless of the

submitted budget. If 𝑎 𝑗 wins in Stage II, we consider two cases regarding 𝑡𝑘𝑗 ’s valuation.

Case (a): 𝑣𝑘𝑗 ≥ 𝑐 , where 𝑐 is a fixed price chosen with a certain probability (Line 11 in Algorithm 1).

If the task requester reports his true valuation, namely 𝑏𝑘𝑗 = 𝑣𝑘𝑗 , his utility will be 𝑣
𝑘
𝑗 −𝑝𝑘𝑗 = 𝑣𝑘𝑗 −𝑐 ≥ 0.
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His utility will not change if he reports any budget above 𝑐 . However, reporting any budget 𝑏𝑘𝑗 < 𝑐

will make him lose the auction and his utility will then be 0.

Case (b): 𝑣𝑘𝑗 < 𝑐 . In this case, reporting the true budget will make the requester’s utility be 0.

However, if he submits a budget 𝑏𝑘𝑗 ≥ 𝑐 , he will be a winner while his utility becomes 𝑣𝑘𝑗 − 𝑐 < 0.

In summary, reporting the true budget is a dominant strategy for the task requester. □

In Stage I, the metric of the algorithm performance is the amount of budget the agent receives.

Here, a mechanism Ψ is said to be 𝛼-competitive if, for any group of tasks G𝑗 with a budget vector

b = [𝑏1𝑗 , 𝑏2𝑗 , ..., 𝑏
𝑛 𝑗

𝑗
], the expected budget obtained by Ψ satisfies E[Ψ (b)] ≥ Φ(b)/𝛼 , where Φ is the

optimal single price mechanism. Then we can conclude the theoretical performance of PLnG by

the following lemma.

Lemma 4. Given 𝜖 ∈ (0, 1/(𝑒 − 1)], PLnG is 3(1+𝜖)
2𝜖

-competitive.

Proof. The proof of Lemma 4 is given in Appendix A. □

With Lemma 4, We can show the advantage of PLnG compared with SAMU [20] and SUCP [14].

Specifically, assume that the budget of a task in the group G𝑗 obeys an uneven distribution:

𝑏𝑘𝑗 =

{
𝑛 𝑗 , 𝑖 = 1, 2,

1, 3 ≤ 𝑖 ≤ 𝑛 𝑗 ,

where 𝑛 𝑗 ≫ 1. Let b = {𝑏𝑘𝑗 |1 ≤ 𝑘 ≤ 𝑛 𝑗 }, we have Φ(b) = 2𝑛 𝑗 . Given any 𝜖 ∈ (0, 𝑒 − 1], PLnG is

at least
3(1+𝜖)
2𝜖

-competitive and thus PLnG(b) ≥ 4𝑛 𝑗𝜖

3(1+𝜖) . According to SUCP, 𝑎 𝑗 randomly chooses

𝑚 ∈ [1, 𝑛 𝑗 ] and uses 𝑏𝑚𝑗 as the clearing price, selecting tasks whose budgets are larger than 𝑏𝑚𝑗 .

If there are 𝜔 selected tasks, SUCP’s budget will be 𝑏𝑚𝑗 𝜔 . Therefore, the expected budget of 𝑎 𝑗 is

𝑃 [𝑚 = 1|𝑚 = 2] ∗ 0 + 𝑃 [𝑚 > 2] ∗ 2 = 2

𝑛 𝑗
∗ 0 + 𝑛 𝑗−2

𝑛 𝑗
∗ 2 = (2 − 4

𝑛 𝑗
). Thus, the ratio of the expected

budget achieved by PLnG to that by SUCP is

4𝑛𝑗 𝜖

3(1+𝜖 )
2− 4

𝑛𝑗

> 2𝜖
3(1+𝜖)𝑛 𝑗 . Similarly, the ratio between PLnG

and SAMU is also Ω(𝑛 𝑗 ), which shows the superiority of PLnG.

Theorem 1. PLnG is computationally efficient, individually rational, truthful and 3(1+𝜖)
2𝜖

-
competitive, given 𝜖 ∈ (0, 1/(𝑒 − 1)].

4.3.2 The Analysis of Stage II.

Lemma 5. PLnZ is computationally efficient.

Proof. The while-loop executed at each time step (Lines 9-26) is the most time-consuming part

of PLnZ. There are no more than𝑚 users arriving at one time step. For each user, the for-loop in

Lines 18-25 is bounded by 𝑂 (�̂�). Therefore, PLnZ is bounded by 𝑂 (�̂�𝑚). □

Lemma 6. PLnZ is individually rational and budget balanced.

Proof. From Line 15 we can see that each winning user has 𝑟𝑖 = 𝑐 ≥ 𝑠𝑖 and thus 𝑟𝑖 − 𝑠𝑖 ≥ 0. If

he is not selected, his payment will be 0 and thus the utility will be 0 too.

From Lines 3-4, for each 𝑥𝜎 ∈ 𝑋 , we have 𝑥𝜎 ≤ ℎ = 𝑏𝑛∗ . For each winning user, his reward must

be a price 𝑥𝜎 ∈ 𝑋 , i.e., each user’s reward is less than the minimum budget, which completes our

proof. □

Lemma 7. PLnZ is truthful for users.
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Proof. The proof of PLnZ’s truthfulness follows the same procedure of the proof of PLnG’s

truthfulness, and thus is omitted here. □

Theorem 2. PLnZ is computationally efficient, individually rational, budget balanced, and
truthful.

4.3.3 The Analysis of GMZ. As GMZ is the sequential combination of PLnG and PLnZ, it can be

directly inferred that GMZ satisfies the properties of computational efficiency, individual rationality,

budget balance, and double truthfulness (i.e. truthfulness for both task requesters and users).

Theorem 3. GMZ is computationally efficient, individually rational, budget balanced, and
double truthful.

5 ONLINE MECHANISM UNDER NON-ZERO ARRIVAL-DEPARTURE INTERVAL
SCENARIO

In this section, we consider a more general scenario where each user has non-zero arrival-departure

interval. In this case, the user’s bidding information contains not only the bidding price but also the

arrival/departure time. We first use an example to show that GMZ is not truthful in this scenario.

Example 2. Suppose there is a user 𝑢𝑖 with 𝑣𝑖 = 𝑠𝑖 = 5, 𝜏𝑖 = 1, 𝑑𝑖 = 2. At the time step 𝑑 = 1,
the user is evaluated. Assume the clearing price 𝑐 in PLnZ is 6. As the user’s bid is smaller than 𝑐 , he
will be rewarded 𝑟𝑖 = 6 and 𝜇𝑖 = 1. However, if he reports an untruthful 𝜏𝑖 = 2. At the time step 𝑑 = 2,
assuming that the clearing price 𝑐 = 10, then 𝑟𝑖 will be 10. In other words, by announcing an untruthful
arrival time, the user improves his utility from 1 to 5 according to GMZ.

To accommodate this issue, we revise Stage II of GMZ and propose a Group-buying-based online
incentiveMechanism under the Non-Zero arrival-departure interval scenario (GMNZ).

5.1 Revised Stage II
In GMNZ, the user can not only declare an untruthful bidding price but also announce a later

arrival time or an earlier departure time to improve his utility. The challenge here becomes how to

ensure the truthfulness of these strategic users.

Since only the nature of the users has changed, the process of Stage I is not affected. Therefore, we

only need to modify the process of Stage II, which is sketched in the PLnNZ algorithm (Algorithm 3).

Similar to Algorithm 2, we first initialize the required parameters (Lines 1-7). The difference here is

that we initialize an active set S, which consists of all users who have been selected by the platform

and have not yet departed at each time step. At the time step 𝑑 , we conduct the user evaluation

and parameter update using the same strategy as Algorithm 2. Meanwhile, whenever a user is

selected, we add this user to the active set S (Line 16). To ensure the truthfulness in this case, we

update the payments of users in S at the end of the current time step (Lines 28-32). Specifically, the

reward of each user 𝑢𝑖 ∈ S is set to max{𝑟𝑖 , 𝑐}, namely the maximal candidate price chosen during

[𝜏𝑖 , 𝑑𝑖 ]. Here, 𝜏𝑖 and 𝑑𝑖 are the user 𝑢𝑖 ’s reported arrival and departure time, respectively. Finally,

we remove users who depart at the current time step from S.
With the design of PLnNZ, let us reconsider Example 2. If the user 𝑢𝑖 reports his information

truthfully, PLnNZ works as follows: when the user reports his true arrival and departure time 𝜏𝑖 = 1

and 𝑑𝑖 = 2, he will be evaluated with a clearing price 𝑐 = 6 at 𝑑 = 1. He then will be selected with a

reward 𝑟𝑖 = 6 and added to S. At 𝑑 = 2 with the clearing price being 10, the user 𝑢𝑖 ’s reward will

become 𝑟𝑖 = max{6, 10} = 10. As 𝑑𝑖 = 2, the user will be removed from S and his final utility is

𝜇𝑖 = 5. Thus the user 𝑢𝑖 can obtain the utility of 5 according to the GMNZ mechanism by using

PLnNZ. Even if he reports a later arrival time or an earlier departure time, he still cannot improve

his utility. In other words, the truthfulness of users can be guaranteed in this example.
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Algorithm 3 PLnNZ: Price Learning algorithm for matching agents and online users under Non-
Zero arrival-departure interval scenario.

Input: Agents’ budget vector b = {𝑏𝑖 ∈ [𝑙, ℎ]}𝑛𝑖=1 in descending order, the learning rate 𝛼 ≥ 𝑒 − 1,
the interval span 𝛽 ∈ (0, 1], each arriving user’s arrival/departure time 𝜏𝑖/𝑑𝑖 and his bidding

price 𝑠𝑖 .

Output: A matching between online users and agents Λ and the corresponding reward.

1: 𝑛∗ ← argmax𝑗≥1 𝑗𝑏 𝑗 ;ℎ ← 𝑏𝑛∗ ;S ← ∅;
2: 𝑐 ← 0,𝑚∗ ← 0;

3: Let �̂� denote the largest index such that 𝑙 (1 + 𝛽)�̂� < ℎ;

4: 𝑋 ← {𝑙 (1 + 𝛽)𝜎 |𝜎 = 1, 2, ..., �̂�};
5: for 𝜎 = 1 to �̂� do
6: 𝑟𝜎 (0) ← 0;𝑤𝜎 (0) ← 1;

7: end for
8: while 𝑑 ≤ 𝐷 do
9: Set 𝑐 ← 𝑥𝜎 with probability

𝑤𝜎 (𝑖−1)∑�̂�
𝜎′=1 𝑤𝜎′ (𝑖−1)

;

10: while there is a user 𝑢𝑖 arriving at time step 𝑑 do
11: if 𝑚∗ = 𝑛∗ then
12: halt and return the result;

13: end if
14: if 𝑠𝑖 ≤ 𝑐 then
15: 𝑟𝑖 ← 𝑐;𝑚∗ ←𝑚∗ + 1;
16: Λ ∪ {(𝑖, 𝑀𝑎𝑡𝑐ℎ(𝑖,Λ))};S ← S ∪ {𝑢𝑖 };
17: else 𝑟𝑖 ← 0;

18: end if
19: for 𝜎 = 1 to �̂� do
20: if 𝑠𝑖 ≤ 𝑥𝜎 then
21: 𝑔𝜎 (𝑖) ← ℎ − 𝑥𝜎 ;
22: else 𝑔𝜎 (𝑖) ← 0;

23: end if
24: 𝑟𝜎 (𝑖) ← 𝑟𝜎 (𝑖 − 1) + 𝑔𝜎 (𝑖);
25: 𝑤𝜎 (𝑖) ← (1 + 𝛼)𝑟𝜎 (𝑖)/ℎ ;
26: end for
27: end while
28: for each user 𝑢𝑖 ∈ S do
29: if 𝑐 > 𝑟𝑖 then
30: 𝑟𝑖 ← 𝑐;

31: end if
32: end for
33: 𝑑 ← 𝑑 + 1;
34: Remove users departing at time step 𝑑 from S.
35: end while

5.2 Mechanism Analysis
Here, we analyze the desirable properties of GMNZ.

Lemma 8. GMNZ is computationally efficient, individually rational and budget balanced.
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Proof. Because the frame of PLnNZ is similar to that of PLnZ, the proofs of computational

efficiency, individual rationality, and budget balance are almost identical and hence the details are

omitted here. □

Lemma 9. GMNZ is double truthful.

Proof. The proof of Lemma 9 is given in Appendix B. □

The following theorem summarizes the properties of GMNZ.

Theorem 4. GMNZ is computationally efficient, individually rational, budget balanced, and
double truthful.

6 EVALUATION
In this section, we evaluate the performance of GMZ and GMNZ. We first compare PLnG with

Φ, SUCP [14], and SAMU [20] to show the performance of the designed pricing learning auction.

Φ is the optimal single price mechanism as introduced in Section 4.1. Given a group of tasks G𝑗 ,

SUCP randomly chooses one task 𝑡𝑘𝑗 and uses 𝑏𝑘𝑗 as the clearing price, selecting all tasks with

budgets larger than 𝑏𝑘𝑗 . If there are 𝜅 winning tasks, the budget for 𝑎 𝑗 will be 𝜅𝑏
𝑘
𝑗 . SAMU sorts G𝑗

in descending order according to each task’s budget. Then it chooses𝑚 ∈ [1, |G| − 1] randomly

and the clearing price will be 𝑏
|G |−𝑚+1
𝑗

. Finally, the first |G𝑗 | −𝑚 tasks will be winners and 𝑎 𝑗 ’s

budget will be ( |G𝑗 | −𝑚)𝑏 |G |−𝑚+1𝑗
.

We then compare the overall performance of GMZ and GMNZ with the offline incentive mecha-

nism (OIM) and the Vickery mechanism adapted to the double auction with a random selection

(VIC). OIM uses Φ(b) to maximize the agent’s budget in Stage I. In Stage II, OIM applies Φ(b, s) to
maximize the utility of the platform. Φ(b, s) is defined as

Φ(b, s) = max

1≤𝑘≤𝜀
𝑘 (𝑏𝑘 − 𝑠𝑘 ), (5)

where 𝜀 = min{|b|, |s|}. VIC uses SUCP in Stage I. In Stage II, given the nonincreasing budget vector

b and the nondecreasing bid vector s, VIC finds the largest �̂� such that 𝑏�̂� ≥ 𝑠�̂� and then chooses

𝑚 ∈ [1, �̂� − 1] randomly. The first𝑚 agents and𝑚 users win with the payment 𝑏𝑚+1 and the reward
𝑠𝑚+1, respectively. Finally, we show the truthfulness of GMZ and GMNZ, respectively.

6.1 Experimental Setup
We conduct experiments with both synthetic and real-world datasets. In the synthetic dataset,

the locations of users and tasks are generated in a 2D data space [0, 500]2. We generate 30 users

(𝑚 = 30) and 200 tasks (∑𝑗 𝑛 𝑗 = 200) in total, varying the maximum group capacity𝑀 from 10 to

40 with an increment of 10. The number of agents 𝑛 is determined by the result of task grouping.

In Stage I, each task 𝑡𝑘𝑗 ’s valuation 𝑣𝑘𝑗 and budget 𝑏𝑘𝑗 are uniformly distributed in [5, 10]. In Stage

II, each user’s reserved price 𝑠𝑖 and bid 𝑣𝑖 are uniformly distributed in [20, 40], which are larger

than the budget of any individual task. We set the deadline 𝑇 = 500, the learning rate 𝛼 = 5 and

the interval span 𝛽 = 0.2 as default parameters. Each user’s arrival time satisfies the uniform

distribution and the arrival-departure interval is uniformly distributed over [10, 30]. Whenever

one user arrives, he will be placed at a random location. We also vary the learning rate 𝛼 from 1 to

100 with an increment of 1 and vary the interval span 𝛽 from 0 to 1 with an increment of 0.01 to

investigate their influence on the mechanisms. Each measurement is averaged over 500 instances.

We also use the real-world dataset T-Drive [4, 40] in the experiment. T-Drive contains the GPS

trajectories of 10,357 taxis during the period from Feb. 2 to Feb. 8, 2008, within Beijing, China. We

randomly select 50 trajectories and sample one point in each trajectory as a user. Similarly, we
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Fig. 3. Visualization of the T-Drive dataset.

randomly select 650 trajectories and sample one point in each of these trajectory as a task. The

position coordinates of the sampled points are used to initialize the positions of tasks and users.

Other parameters are the same as in the synthetic dataset.

6.2 Experiment result
6.2.1 Visualization of the T-Drive dataset. We first approximately convert all latitude and longitude

coordinates of the sampled points into plane coordinates. After eliminating outliers, we fix all points

in a two-dimensional plane of 18000m*18000m. As shown in Figure 3(a), the 650 task points are

divided into 25 groups in different colors. The 50 user points are depicted by black bounding boxes.

Figure 3(b) shows the matching result by using the proposed mechanism GMZ. The winning tasks

in most groups (colorful points) are successfully matched with nearby users who have relatively

low bids, while some groups (grey points) cannot be matched with suitable users. This phenomenon

is reasonable as (1) there is a strategy in Stage II that matches a user with the closest available

agent and (2) few users locate near the unmatched groups and their bids are likely to be dominated

by the majority of users.

6.2.2 Comparison of different algorithms used in Stage I. Figure 4 compares the budgets given

to agents calculated by PLnG, Φ(b), SUCP, and SAMU on two datasets respectively. Generally,

the optimal mechanism Φ(b) obtains the highest budget compared with the other algorithms. As

SUCP and SAMU randomly choose one clearing price to evaluate tasks, their performances are

very close. The proposed PLnG performs better than SUCP and SAMU, which verifies its price

learning capability. Considering the synthetic dataset, in Figure 4(a), it can be seen that the gap

between PLnG and Φ(b) is the biggest when𝑀 = 10. This is because the strength of the learning

strategy is not fully utilized as there are only a few tasks in each group. With the increment of𝑀 ,

the performance advantage of PLnG compared to SUCP and SAMU becomes larger and the gap

between PLnG and Φ(b) becomes smaller. In Figure 4(b), we set𝑀 = 40. The performance of PLnG

is very close to Φ(b) and is much better than SUCP and SAMU with different numbers of tasks.

Figure 4(c) and Figure 4(d) show the performance on the T-Drive dataset when we vary the number
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Fig. 4. Comparison of different algorithms used in Stage I. (a)(b): Synthetic Dataset. (c)(d): T-Drive Dataset.

of tasks and the value of𝑀 . Again, PLnG performs better than SUCP and SAMU and has a close

performance compared with Φ(b).

6.2.3 Convergence of the candidate price selection probability. Here, we choose group G1 on the

T-Drive dataset to study the convergence speed of PLnG. G1 has 31 tasks and the smallest and

largest budgets are 5.005 and 9.892, respectively. Let b denote the nonincreasing budget vector of

tasks in G1. We calculate the optimal price 𝑏 𝑗∗ = 5.69 of Φ(b) (Eq. (4)). Then we set 𝛽 = 0.12 and

𝛼 = 5 here and the candidate price set is 𝑋 = {5.6, 6.27, 7.02, 7.87, 8.81, 9.87}. Figure 5 shows the
convergence speed of the candidate price selection probability obtained by PLnG. The x-axis is

the serialized number of the task 𝑡𝑘
1
. The x-axis value equal to 𝑘 means that we have evaluated the

first 𝑘 tasks. The y-axis is the probability value of selecting a candidate price. In the beginning, the

probability of selecting any candidate price is 1/6. Each time after we evaluate a task, the parameters

of the algorithm are updated accordingly. As the number of evaluated tasks grows, the probability

of choosing 𝑥1 = 5.6 as the clearing price increases rapidly, the probability of choosing 𝑥2 = 6.27

fluctuates around 0.2, and the probability of choosing other candidate prices quickly drops to near

0. In fact, with fewer than 10 samples, we have a dominant probability to select 𝑥1 or its closest

price 𝑥2 as our evaluation price. Namely, we use 𝑥1 or 𝑥2 to approximate the optimal evaluation

price with a high probability, and the selection probability of other prices that are significantly

different from 𝑥1 and 𝑥2 is near 0. Note that, 𝑥1 is indeed the candidate price closest to the optimal
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Fig. 5. (T-Drive) Convergence of the candidate price selection probability in PLnG.

price and 𝑥2 is the second closest in our setting. It means that our algorithm can quickly converge

to a near-optimal price with a high probability.

6.2.4 Comparison of different mechanisms. Figure 6(a) shows the experimental results by varying

the value of 𝑀 on the synthetic dataset. The platform’s utility of each compared mechanism

increases with the increment of𝑀 . OIM uses the optimal single price omniscient mechanism Φ(b)
to maximize the budget of each agent in Stage I and uses the optimal mechanism Φ(b, s) with
respect to budgets and bids in Stage II. Therefore, it always outperforms the other mechanisms.

The gap between the proposed mechanisms (GMZ and GMNZ) and OIM becomes smaller with

the increment of𝑀 , and the proposed mechanisms show advantages compared with VIC. When

𝑀 is fixed to 40, Figure 6(b) shows the results by varying the number of tasks on the synthetic

dataset. All mechanisms obtain higher platform utility when the number of tasks increases. Again,

the two proposed mechanisms GMZ and GMNZ perform much better than VIC. It can be noticed

that in all cases, the performance of GMZ is better than GMNZ. This is because that GMNZ usually

pays more than GMZ since users have non-zero arrival-departure intervals. We also conduct the

experiments by varying the value of𝑀 and the number of tasks on the T-Drive dataset. The results,

as shown in Figure 6(c) and Figure 6(d), exhibit similar trends as those on the synthetic dataset.

Again, GMZ and GMNZ have close performance with OIM and outperform VIC significantly.

6.2.5 Impact of the parameters 𝛼 and 𝛽 . Figure 7 shows the performance comparison of stage I

when we vary the value of 𝛼 and 𝛽 on the synthetic dataset. Here𝑀 is fixed to 40 and there have

200 tasks in total. In Figure 7(a) and Figure 7(c), when the value of 𝛼 increases, the agents’ budgets

will all increase. The reason is that, with the larger learning rate, the weight of the price 𝑥𝜎 ∈ 𝑋
with the higher profit will increase more rapidly. In other words, we have a greater probability to

choose a fixed price close to the optimal price. Nevertheless, the trends in these figures also show

that, the marginal increment of the algorithm becomes smaller when the learning rate is large

enough. Figure 7(b) and Figure 7(d) show the impact of 𝛽 on PLnG. In Figure 7(b), we can see that

a smaller interval generates a selected price closer to the optimal price, so better results can be

achieved. However, in Figure 7(d) with 𝑙 = 1, when we set 𝛽 to a small value like 0.1, the candidate

price set 𝑋 has many unavailable prices. At this time, the task budgets are all in the range [5,10],

while 𝑋 = {1.1, 1.21, 1.331, ...}. When we choose candidate prices smaller than 5 or larger than 10

to evaluate these tasks, no task will be selected. Hence a smaller value of 𝛽 leads to a low budget

of the agent. Similarly, if we set 𝛽 = 1 and then 𝑋 = {1, 2, 4, 8}, only when we select 𝑐 = 8 can the

agent get a budget. Thus in this case, the performance of PLnG is also poor. Similar results can be
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Fig. 6. Comparison of different mechanisms. (a)(b): Synthetic Dataset. (c)(d): T-Drive Dataset.

observed on the T-Drive dataset (Figure 8). Influenced by the range of task budgets [𝑙, ℎ], different
𝛼 and 𝛽 bring different performances. Thus, we need to determine the value of 𝛽 according to the

values of 𝑙 and ℎ to achieve the excellent performance of the algorithm.

6.2.6 Truthfulness of GMZ. We first verify the truthfulness of users by randomly picking two

mobile users (ID = 2 and ID = 25) and allowing them to bid prices that are different from their

reserved prices on the synthetic dataset. We illustrate the results in Figure 9(a) and Figure 9(b).

As can be seen, the user 𝑢2 in Figure 9(a) is a winner (i.e., selected by the platform). He achieves

his optimal utility if he bids truthfully (𝑠𝑖 = 𝑣𝑖 = 20.65) and his utility will be 0 if he reports a bid

larger than 24. 𝑢25 in Figure 9(b) fails the auction and his utility is 0 originally. If he reports a bid

such that 𝑠𝑖 ≤ 11, he will be selected while his utility will be negative. In addition, any other bid

will leave his utility to 0. Figure 9(c) and Figure 9(d) show the truthfulness of task requesters. The

requester of task 𝑡2
1
in Figure 9(c) is a winner and he obtains the optimal utility when he reports

𝑏2
1
= 𝑣2

1
. The requester of 𝑡4

3
in Figure 9(d) fails the auction and his utility is 0 when he reports his

valuation 𝑣4
3
= 5.12. He will receive a negative utility if he reports any budget 𝑏4

3
≥ 12.5. We also

verify the truthfulness of users and requesters on the T-Drive dataset in Figure 10. Similarly, we

have a winner 𝑢45 with reversed price 24.8 and a loser 𝑢32 with reversed price 51 in Figure 10(a)(b),
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Fig. 7. Impact of the parameters 𝛼 and 𝛽 (Synthetic Dataset). (a)(b) 𝑙 = 5. (c)(d) 𝑙 = 1.
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Fig. 8. Impact of the parameters 𝛼 and 𝛽 (T-Drive Dataset). (a)(b) 𝑙 = 5. (c)(d) 𝑙 = 1.

the winner cannot improve his utility by manipulating his bid and the loser cannot get a positive

utility by changing his bid. In Figure 10(c)(d) we have two requesters 𝑡12
1

and 𝑡19
6
. It can be seen that

they both satisfy the property of truthfulness. In brief, these results verify the truthfulness of GMZ

for both users and requesters.

6.2.7 Double Truthfulness of GMNZ. As users can strategically submit prices aswell as arrival/departure

time in GMNZ, we randomly pick one user 𝑢11 for examination on the synthetic dataset. We allow

him to report his bidding price, arrival time, and departure time freely. The results are shown in

Figure 11. As can be seen, the user 𝑢11 achieves his optimal utility if he reports his true information

𝑏𝑖 = 𝑣𝑖 = 25.1, 𝜏𝑖 = 368, 𝑑𝑖 = 382. Reporting any arrival time later than 𝜏𝑖 or departure time earlier

than 𝑑𝑖 cannot improve his utility. Figure 12 shows the result on the T-Drive dataset, where the

user 𝑢53 has 𝑣𝑖 = 40, 𝜏𝑖 = 370, 𝑑𝑖 = 385. Again, reporting any bidding information different from his

true information cannot improve his utility.

7 CONCLUSION
In this paper, we have proposed two group-buying-based two-stage incentive mechanisms for

MCS systems. The proposed mechanisms can effectively bridge the gap between task requesters

with low recruitment budgets and mobile users with relatively high working prices, and thus

improve the applicability of MCS systems. Through theoretical analysis and extensive evaluation,

the proposed mechanisms have been proved to have the desirable properties of computational

efficiency, individual rationality, budget balance, truthfulness, and good performance.
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Fig. 9. Truthfulness of GMZ (Synthetic Dataset). (a)(b) Truthfulness for users. (c)(d) Truthfulness for re-
questers.
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Fig. 10. Truthfulness of GMZ (T-Drive Dataset). (a)(b) Truthfulness for users. (c)(d) Truthfulness for requesters.
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Fig. 11. Truthfulness of GMNZ (Synthetic Dataset).
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Fig. 12. Truthfulness of GMNZ (T-Drive Dataset).
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A PROOF OF LEMMA 4
Here we prove the performance ratio of PLnG to the optimal single priced omniscient auction

determined by Eq. (4). We first prove the following lemma.

Lemma 10. For any input sequence b and learning rate 𝛼 ≥ 𝑒 − 1, let E[𝑅(b)] denote the
expected total budget aggregated from PLnG and let Φ𝑋 (b) = max1≤𝜎≤�̂� 𝑟𝜎 ( |b|) denote the maximum
final budget by choosing the optimal candidate price to evaluate the input sequence b, then we have:

E[𝑅(b)] ≥ Φ𝑋 (b)
𝛼
− ℎ

𝛼
�̂� .

Proof. Let𝑊 (𝑘) = ∑�̂�
𝜎=1𝑤𝜎 (𝑘). According to PLnG, the expected profit (i.e., paid budget) of

the task 𝑡𝑘+1𝑗 is:

E[𝑉 (𝑘 + 1)] =
∑�̂�

𝜎=1𝑤𝜎 (𝑘)𝑔𝜎 (𝑘 + 1)
𝑊 (𝑘) .
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Since𝑤𝜎 (𝑘 + 1) = (1 + 𝛼)𝑟𝜎 (𝑘+1)/ℎ and 𝑟𝜎 (𝑘 + 1) = 𝑟𝜎 (𝑘) + 𝑔𝜎 (𝑘 + 1), we have:

𝑊 (𝑘 + 1) =
�̂�∑

𝜎=1

𝑤𝜎 (𝑘) (1 + 𝛼)𝑔𝜎 (𝑘+1)/ℎ

≤
�̂�∑

𝜎=1

𝑤𝜎 (𝑘) (1 + 𝛼 (𝑔𝜎 (𝑘 + 1)/ℎ))

=𝑊 (𝑘) + 𝛼𝑊 (𝑘)
∑�̂�

𝜎=1𝑤𝜎 (𝑘) (𝑔𝜎 (𝑘 + 1)/ℎ)
𝑊 (𝑘)

=𝑊 (𝑘) (1 + 𝛼

ℎ
E[𝑉 (𝑘 + 1)]),

where the inequality is derived from the fact that (1 + 𝛼)𝑥 ≤ 1 + 𝛼𝑥 for 𝑥 ∈ [0, 1] and 𝛼 ≥ 0. Since

𝑊 (0) = ∑�̂�
𝜎=1𝑤𝜎 (0) = �̂� , we have:

𝑊 ( |b|) ≤ �̂�

|b |∏
𝑘=1

(1 + 𝛼

ℎ
E[𝑉 (𝑘)])

≤ exp (�̂�)
|b |∏
𝑘=1

exp (𝛼
ℎ
E[𝑉 (𝑘)])

= exp (�̂� + 𝛼

ℎ

|b |∑
𝑘=1

E[𝑉 (𝑘)]),

where the second inequality is derived from the fact that 𝑥 ≤ 𝑒𝑥 and 1 + 𝑥 ≤ 𝑒𝑥 for all 𝑥 ≥ 0.

As Φ𝑋 (b) = max1≤𝜎≤�̂� 𝑟𝜎 ( |b|) denotes the maximum final profit, (1 + 𝛼)Φ𝑋 (b)/ℎ
is the maximum

final weight. Since the sum of the final weights is at least the value of the maximum final weight,

namely𝑊 ( |b|) ≥ (1 + 𝛼)Φ𝑋 (b)/ℎ
, we have:

(1 + 𝛼)Φ𝑋 (b)/ℎ ≤ exp (�̂� + 𝛼

ℎ

|b |∑
𝑘=1

E[𝑉 (𝑘)]).

As 1 + 𝛼 ≥ 𝑒 , we can derive from the above inequality that:

Φ𝑋 (b)/ℎ ≤ �̂� + 𝛼

ℎ

|b |∑
𝑘=1

E[𝑉 (𝑘)] .

Let E[𝑅(b)] = ∑ |b |
𝑘=1
E[𝑉 (𝑘)] denote the expected total budget aggregated from PLnG, then we

have

E[𝑅(b)] ≥ Φ𝑋 (b)
𝛼
− ℎ

𝛼
�̂� .

□

Now we are ready to prove Lemma 4. Given the optimal auction Φ(b) and the maximum final

budget Φ𝑋 (b) obtained by PLnG, as rounding down a price to a power of (1 + 𝛽) loses at most

a factor of (1 + 𝛽) in the result, hence Φ(b) ≤ (1 + 𝛽)Φ𝑋 (b). Combining Lemma 10 and setting

𝛼 = 1/𝜖, 𝛽 = 𝜖 (𝜖 ∈ (0, 1/(𝑒 − 1)]), we have:

E[𝑅(b)] ≥ Φ𝑋 (b)
𝛼
− ℎ

𝛼
�̂� ≥ Φ(b)

𝛼 (1 + 𝛽) −
ℎ

𝛼
�̂� =

𝜖Φ(b)
1 + 𝜖 − 𝜖ℎ�̂� .
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Given that Φ(b) ≥ 3ℎ(1 + 𝜖) ln(ℎ/𝑙)
ln(1+𝛽) , since �̂� =

ln(ℎ/𝑙)
ln(1+𝛽) , we have:

𝜖ℎ�̂� ≤ 𝜖

3(1 + 𝜖)Φ(b).

Hence

E[𝑅(b)] ≥ 𝜖

1 + 𝜖Φ(b) −
𝜖

3(1 + 𝜖)Φ(b) =
2𝜖

3(1 + 𝜖)Φ(b),

which completes our proof.

B PROOF OF LEMMA 9
Given the user 𝑢𝑖 with the true information tuple (𝑣𝑖 , 𝜏𝑖 , 𝑑𝑖 ) and his reported information tuple

(𝑠𝑖 , 𝜏𝑖 , 𝑑𝑖 ), we first give the following two lemmas.

Lemma 11. At the time step 𝑑 = 𝜏𝑖 , given a fixed clearing price 𝑐 , the user𝑢𝑖 ’s dominant strategy
is reporting his reserved price 𝑣𝑖 .

Proof. We consider two cases. (i) 𝑣𝑖 ≤ 𝑐 . Reporting the user’s reserved price brings him a reward

𝑟𝑖 = 𝑐 and 𝜇𝑖 = 𝑐 − 𝑣𝑖 ≥ 0. Reporting any bid 𝑠𝑖 ≤ 𝑐 will not make any difference while reporting

𝑠𝑖 > 𝑐 will make him lose the auction and his utility becomes 0. (ii) 𝑣𝑖 > 𝑐 . The user’s utility will be

0 if he reports truthfully. Reporting 𝑠𝑖 ≤ 𝑐 will let him be a winner while his utility 𝜇𝑖 = 𝑐 − 𝑣𝑖 < 0.

In brief, reporting the price truthfully is the dominant strategy. □

Lemma 12. Given 𝑠𝑖 , the other users’ strategies, and each time step’s clearing price 𝑐 , the user
𝑢𝑖 ’s dominant strategy is reporting the true arrival/departure time 𝜏𝑖 /𝑑𝑖 .

Proof. Note that 𝑢𝑖 always obtains the maximal clearing price during [𝜏𝑖 , 𝑑𝑖 ] as his reward.
Assume that at the time step 𝑑 ∈ [𝜏𝑖 , 𝑑𝑖 ], the user 𝑢𝑖 obtains the maximal reward 𝑟 ∗. Then reporting

any 𝜏𝑖 ∈ [𝜏𝑖 , 𝑑] and 𝑑𝑖 ∈ [𝑑,𝑑𝑖 ] cannot improve the reward. However, if 𝑢𝑖 reports 𝜏𝑖 > 𝑑 or 𝑑𝑖 < 𝑑 ,

his reward will be less than 𝑟 ∗. In other words, reporting any untruthful arrival/departure time

cannot increase the user’s reward. □

According to GMNZ, if 𝑢𝑖 is not selected at the time step 𝑑 = 𝜏𝑖 , he will be discarded and 𝜇𝑖 will

be 0. If selected, he will get a reward 𝑟𝑖 = 𝑐 , where 𝑐 is the clearing price at this time step. Because

𝑢𝑖 can only bid once when 𝑑 = 𝜏𝑖 , from Lemma 11, we know that reporting his reserved price 𝑠𝑖 = 𝑣𝑖
is a dominant strategy. From Lemma 12, we know that reporting truthful arrival/departure time is

a dominant strategy for 𝑢𝑖 . In summary, the user cannot improve his utility by misreporting his

bidding information.
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