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Abstract—Mobile crowd sensing (MCS) has become a powerful
sensing paradigm that allows requesters to outsource location-
based sensing tasks to a crowd of participating users carrying
smart mobile devices. Aware of the paramount importance of
incentivizing participation for MCS systems, researchers have
proposed a wide variety of incentive mechanisms. Most of these
mechanisms assume that the MCS platform can collect sufficient
budget to recruit users, and hence only focus on incentivizing
users efficiently. In this work, we consider MCS systems where
the budget of a single task is insufficient for recruiting a user.
Commonly, a task requester with a simple task (e.g., inquiring
a photo of a restaurant) is willing to provide a low budget,
while a user would like to earn a higher reward for his effort
in completing a task (e.g., traveling a long distance to take
a photo). To address this disparity issue between requesters
and users, we propose a novel task-bundling-based two-stage
incentive mechanism to incentivize both requesters and users.
Through rigorous theoretical analysis and extensive simulations,
we demonstrate that the proposed incentive mechanism satisfies
the properties of computational efficiency, individual rationality,
budget balance, truthfulness, and constant competitiveness.

Index Terms—Mobile crowd sensing, incentive mechanism,
task bundling, two-stage auction.

I. INTRODUCTION

With the proliferation of smart mobile devices possessing
powerful sensing, networking, and computing capabilities,
mobile crowd sensing (MCS) has become a prevalent sensing
paradigm that can recruit a crowd of mobile users to perform
a wide variety of location-based sensing tasks [1]. Examples
of these tasks include urban traffic monitoring [2], object
tracking [3], and environment monitoring [4]. With the recent
advances of IoT technologies, MCS is expected to provide
more novel spatial-temporal sensing applications for smart
cities and cover almost every aspect of our lives.

Incentive mechanisms are of paramount importance for M-
CS systems to attract sufficient participants. As users consume
various resources, such as battery power and data transmission
cost, and endure the risk of privacy leakage when undertaking
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sensing tasks, it is essential to provide them with sufficient
rewards by delicate incentive design. Therefore, a great many
incentive mechanisms have been proposed in the literature [5]–
[10]. These works mostly assume that the budget provided by
the platform or requester is sufficient to attract users to perform
sensing tasks. Thus they focus on the characteristics of users
when designing mechanisms given the budget.

However, in many MCS scenarios, the task of a requester
is usually simple, e.g., a requester may need a photo of a
nearby restaurant to check whether it is open or not, and then
decides whether to eat at that restaurant after work. Naturally,
the requester is unwilling to pay a lot for this photo (it is
unacceptable if it costs more than his lunch). On the other
hand, a mobile user may be far away from this restaurant, and
needs to walk a long distance to complete the task. Hence, the
user expects to receive a relatively high reward for completing
such tasks. As a result, this disparity of expected payment and
reward is very likely to cause that no user is willing to perform
these small sensing tasks and the requesters cannot obtain the
expected sensing data.

To address this essential issue, in this paper, we propose
a new incentive framework where both requesters and users
can be effectively motivated to participate in MCS. Inspired
by group buying services on the radio spectrum sharing [11],
[12], we assume that nearby tasks can be voluntarily bundled
together to obtain and share services from users. In this way,
the budgets of tasks in one bundle can be aggregated to form
a total budget that is high enough to attract mobile users,
although no individual task requester can afford the cost of
recruiting a user. We consider that there is an agent in each
bundle as a representative. The agent runs a mechanism to
decide which tasks should be incorporated (these tasks are
termed as winning tasks) and collect their budgets as the
bundle’s budget. A double auction is then conducted between
agents and users. Winning users will be rewarded and respon-
sible for performing the winning tasks in the corresponding
bundle. At the same time, each winning agent will charge the
winning tasks in his bundle according to the payment for the
user.

Although group-buying-based mechanisms have been stud-
ied in spectrum auctions and a similar novel concept “task
bundling scheme” has been proposed by some existing works



in MCS [13], [14], no existing mechanism can be directly
applied to our scenario and the following characteristics make
our work challenging.

First, a well-designed incentive mechanism needs to guar-
antee the crucial property of truthfulness, which prevents the
auction participants from disrupting the market through manip-
ulating bidding prices. Most existing works have fixed budgets
for sensing tasks, and only consider the bidding behaviors
of users when designing truthful mechanisms. However, in
our considered scenarios, users, agents, and task requesters all
participate in the auction and can bid freely. Hence it becomes
more complicated to design a triple truthfulness mechanism,
which ensures the truthfulness of all the three kinds of
participants at the same time. Furthermore, it is also expected
to design an incentive mechanism with a constant competitive
ratio compared to the optimal mechanism with respect to the
system optimization goal, which is more challenging in our
scenario as we design a two-stage mechanism which consists
of two auction processes.

Second, as one user performs multiple tasks which share the
payment for recruiting the user, it is bound to cause time delay
on completing these tasks (i.e., the waiting time for the user to
complete all winning tasks in the corresponding bundle). The
time delay may affect the task requester’s satisfaction with the
sensing service and thus diminish the task’s utility. Therefore,
we need to quantify the impact of time delay on the task’s
utility and take into account this factor when making decisions.
It thus makes the incentive mechanism design more difficult
as we need to determine a suitable number of winning tasks
and the corresponding winning prices of winning tasks.

To accommodate the above challenges, we propose a two-
stage incentive mechanism. The main idea is that, in Stage I,
tasks with different location requirements form different bun-
dles. To increase the budget for each bundle’s agent, we design
an algorithm to divide each bundle’s tasks into a reference
set and a candidate set, where the reference set determines
the agent’s budget and winners are chosen from the candidate
set. In Stage II, agents and users submit their budgets and
bids simultaneously. To optimize the platform’s utility and
ensure the truthfulness of both agents and users, we design an
efficient mechanism to select agent-user pairs. Through theo-
retical analysis and simulations, we prove that the proposed
mechanisms satisfy the desirable properties of computational
efficiency, individual rationality, budget balance, truthfulness,
and constant competitiveness.

The remainder of this paper is organized as follows: Sec-
tion II presents the related work. In Section III, we describe
the system model and formulate the problem as a two-stage
auction. We then elaborate on the proposed mechanism in
Section IV and present the evaluation results in Section V.
Finally, we conclude this paper in Section VI.

II. RELATED WORK

Researchers have spent much effort in designing incen-
tive mechanisms for MCS [15]. Among the various types
of mechanisms, reverse auction based mechanisms are most

prevalent [5]–[10]. These mechanisms focus on the user’s
strategic behavior in the MCS system, and mostly assume
that the budget for recruitment is sufficiently high. Our work
differs from these works in that we observe the necessity
of cooperation of task requesters with low budgets and thus
propose a new incentive mechanism framework for MCS,
which jointly considers the behaviors of requesters and users.

Double auction is applied in this study. Considering the
theoretical performance, Deshmukh et al. [16] propose a
technique to convert α-competitive basic auctions into 2α-
competitive double auctions. This theory is widely used in
designing double spectrum auction. Zhai et al. [17] propose
a double auction based mechanism to improve the networks’
benefit with high energy efficiency. Zhang et al. [18] propose
a double auction mechanism to ensure fair trading for service.
Compared with these works, our work addresses the incentive
mechanism design problem with three parties in MCS. The
proposed mechanism allows requesters, users, and agents to
bid fairly and ensure that all participants are truthful.

Recently, the group buying scheme is considered when
designing spectrum auctions in cognitive radio networks and
incentive mechanisms in MCS. Lin et al. [11] propose a novel
three-stage mechanism TASG based on group buying. Based
on this, Huang et al. [19] observe that in MCS, there exists
a mismatch between requesters’ low budgets and workers’
high prices. Thus they extend TASG for MCS and propose
TGBA. In addition, a similar concept “task bundling” is also
used in MCS. Wang et al. [14] propose a truthful incentive
mechanism based on task bundling and tackle the problem
of unbalance participation. Xie et al. [13] combine “task
bundling scheme” and “rating system” to design an incentive
mechanism. Although the aforementioned works use the “task
bundling scheme” in different scenarios, these mechanisms
cannot adapt to our scenario where we not only need the tasks
to share payment and sensing capability of users, but also aim
to guarantee all participants’ truthfulness and the mechanism’s
competitiveness.

III. PRELIMINARIES

In this section, we first describe the task bundling scenario in
MCS and formulate the problem of recruiting mobile users as a
two-stage auction. Then, we introduce the desirable properties
for incentive mechanisms in MCS.

A. Problem Formulation

As shown in Fig. 1, a task bundling scenario consists of task
requesters, agents, mobile users and a platform. Each requester
submits a sensing task at a time. Tasks form different bundles
thus they can use an accumulated budget to recruit users for
improving the possibility of task completion. An agent acts
as a representative for a bundle of tasks to directly negotiate
with the platform for recruiting users. Mobile users act as
workers who are interested in undertaking sensing tasks and
they also negotiate with the platform for selling their sensing
capability. The MCS platform, which may reside in the cloud,
is responsible for matching agents and users, such that the
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Fig. 1. A two-stage auction framework.

sensing tasks can be assigned to the suitable users and at the
same time the platform achieves a high utility.

Mathematically, we consider the scenario where there are n
bundles of tasks B = {B1,B2, ...,Bn} and there is an agent for
each bundle. Thus we have n agents A = {a1, a2, ..., an}. In
the bundle Bj , there are nj tasks Bj = {t1j , t2j , ..., t

nj

j }. A task
tkj ∈ Bj is associated with a tuple (bkj , v

k
j , p

k
j , µ

k
j ), where the

budget bkj is the task’s maximum payment for the sensing data,
the valuation vkj is the value of the sensing data that is only
known to the task’s requester, the payment pkj is the reward
given to the user who completes the task, and the utility µkj
reflects the requester’s utility for participating in MCS. There
are a crowd of mobile users U = {u1, u2, ..., um} interested
in performing sensing tasks. The user ui ∈ U is identified by
a tuple (vi, si, ri, µi), where the reserved price vi reflects the
true cost for performing sensing tasks and is only known to the
user, the price si is the bidding price submitted to the platform,
the reward ri is the payment received from the platform for
completing sensing tasks, and µi is the utility of the user for
participating in MCS. We assume that a user serves for at most
one bundle of tasks here, since each bundle is usually spatially
clustered and thus is convenient for the user to complete.

We model the interaction between requesters, agents, and
users as a two-stage auction. In Stage I, an auction is conduct-
ed for determining winning tasks and budget in each bundle,
while in Stage II, a double auction is conducted between
agents and users, where the agents use the budgets obtained
in the first stage to recruit users.

Specifically, in Stage I, tasks with similar location require-
ments are collected into the same bundle and an agent is
generated to represent the bundle. The requester of the task
tkj submits a bid to the agent aj . The agent aj decides the
set of winning tasks Wj and the total budget bj of the bundle
Bj . These agents then participate in Stage II, which generates
the final agent-user matching result Λ = {(aj , ui)|j ∈
[1, 2, ..., n], i ∈ [1, 2, ...,m]}. If the agent aj is successfully
matched with a user (i.e., aj ∈ Λa = {aj |(aj , ui) ∈ Λ}) by
offering the payment pj , the corresponding winning tasks in
Wj will receive the sensing data and each task tkj ∈ Wj will

be charged a payment pkj . Thus the utility of the agent aj can
be defined as:

µj =

 bj − pj , aj ∈ Λa,

0, otherwise.
(1)

The utility of the task is affected by the number of winning
tasks in its bundle. If the number of winners is too large, it
will take a long time for the user to complete the winning
tasks in the bundle. Hence we assume that the task’s utility is
inversely proportional to the number of winning tasks in its
bundle and define the time delay function λ(κ) ∈ (0, 1]:

λ(κ) = 1− κ− 1

2M
, 1 ≤ κ ≤M, (2)

where κ is an integer less than the maximum bundle capacity
M . The value of M depends on the task’s timeliness re-
quirement. For example, in [20], the photo-taking task needs
sufficient space-time variety and hence M can be set to a large
value. Conversely, if a task requires a quick response, then M
should be set to a small value. Taking the time delay of tasks
into account, the utility of a task tkj ∈ Bj is defined as:

µkj =

 vkj · λ(|Wj |)− pkj , tkj ∈ Wj and aj ∈ Λa,

0, otherwise.
(3)

In Stage II, agents act as buyers (with a set of budgets
{b1, b2, ..., bn}) and users act as sellers (with a set of bids
{s1, s2, ..., sm}). The platform matches users and agents s-
trategically and finds a matching Λ. The user ui ∈ Λu =
{ui|(aj , ui) ∈ Λ} will be given a reward ri which is not less
than his bid. The utility is the difference of his reward and his
reserved price. If ui /∈ Λu, his utility will be zero. Therefore,
the utility of ui can be defined as:

µi =

 ri − vi, ui ∈ Λu,

0, otherwise.
(4)

For each matched pair (aj , ui) ∈ Λ, the agent aj will
recruit the user ui to collect sensing data. The platform’s utility
is defined as the difference of agents’ payments and users’
rewards:

µ =
∑
aj∈Λa

pj −
∑
ui∈Λu

ri. (5)

For each (aj , ui) ∈ Λ, the value of pj must be not smaller
than the value of ri, which ensures that the utility of the
platform is nonnegative.

Table I lists frequently used notations.

B. Desirable Properties

In this work, our purpose is to design task-bundling-based
two-stage incentive mechanisms, which are expected to satisfy
the following properties.
• Computational Efficiency: An incentive mechanism is

computationally efficient if it returns the result in poly-
nomial time.



TABLE I
MAIN NOTATIONS

Symbol Description

U , ui,m set of users, ith user, and number of users
B,Bj , n, nj set of bundles, jth bundle, number of bundles, num-

ber of tasks in the jth bundle
tkj kth task in jth bundle

Wj , wj set of winners and number of winners in Bj

A, aj set of agents, jth agent w.r.t. jth bundle
vkj , b

k
j , p

k
j , µ

k
j task tkj ’s valuation, budget, payment and utility

vi, si, ri, µi user ui’s reserved price, bid, reward and utility
bj , pj , µj agent aj ’s budget, payment and utility

Λ matching result between users and agents
M maximum bundle capacity

• Individual Rationality: An incentive mechanism is in-
dividually rational if the utility of each participant is
nonnegative. The proposed mechanisms should make sure
that users, agents, and task requesters are all rational.

• Budget Balance: An incentive mechanism is budget
balanced if the utility of the auctioneer (i.e., the platform
here) is nonnegative.

• Truthfulness: An incentive mechanism is truthful if a
bidder cannot improve his utility by submitting a bidding
price deviating from his true value, no matter what the
others’ bidding prices are. Here, the bidders include users,
agents, and requesters, who are game-theoretic and tend
to manipulate their bidding prices so as to maximize their
received payments. Therefore, the mechanism needs to be
triple truthful for users, agents, and task requesters.

• Competitiveness: Since the proposed mechanism is di-
vided into two stages, we discuss the competitiveness
of these two stages separately. In Stage I, the metric
of the algorithm performance is the amount of budget
the agent collects. A mechanism Ψ is said to be α-
competitive if, for any bundle of tasks B, these is a budget
vector b = {b1j , b2j , ..., b

nj

j }, such that the expected budget
obtained by Ψ satisfies E[Ψ(b)] ≥ Φ(b)/α, where Φ
is the optimal mechanism. Similarly, in Stage II, the
utility of the platform is the optimization objective of
the mechanism. Given the budget vector b of all agents
and the bid vector s of all users, we say that Ψ is α-
competitive if the platform’s expected utility obtained
by the mechanism Ψ satisfies E[Ψ(b, s)] ≥ Φ(b, s)/α,
where Φ is the optimal mechanism.

IV. INCENTIVE MECHANISM DESIGN

In this section, we demonstrate the task-bundle-based two-
stage incentive mechanism for mobile crowd sensing (Bundle-
Sense) in detail. Then we analyze the theoretical properties of
BundleSense.

A. Stage I

In Stage I, the winners in each bundle and each bundle’s
budget will be determined by the agent. The key challenge
here is how to maximize the agent’s budget for recruiting
users. As maximizing the agent’s budget can easily lead to

Algorithm 1 AucB: Auction for determining budget and
winners for all Bundles
Input: Each bundle’s set of tasks.
Output: Each agent’s budget bj .

1: for j = 1 to n do
2: t← [t1j , t

2
j , ..., t

nj

j ]; // having b1j ≥ b2j ≥ ... ≥ b
nj

j

3: Partition t uniformly at random into vectors t′ and t′′;
4: Let b′ and b′′ be the budget vectors of t′ and t′′;
5: F ′ ← Φ(b′); F ′′ ← Φ(b′′);
6: if F ′ ≤ F ′′ then
7: (bj ,Wj)← (F ′,ExtT(F ′,b′′));
8: else
9: (bj ,Wj)← (F ′′,ExtT(F ′′,b′));

10: end if
11: end for

untruthful bids, existing works mainly adopt relatively random
algorithms, such as the SAMU algorithm in [11] and the SUCP
algorithm in [19]. Here, we propose the algorithm AucB,
which tries to maximize the budget for each agent strategically,
and at the same time, assure the truthfulness of requesters.

Algorithm 1 demonstrates the auction AucB of Bundle-
Sense. For each bundle, tasks are sorted in nonincreasing order
according to their budgets. The sorted vector t then is parti-
tioned uniformly into two parts, t′ and t′′. Specifically, each
task tkj ∈ t has a probability 1/2 to be put into t′ and otherwise
t′′. Let b′ and b′′ be their corresponding budget vectors. The
optimal single-price auction [21] is adopted to calculate the
optimal budget F ′ and F ′′ for b′ and b′′, respectively. In [21],
the profit of the optimal single-price auction Φ̃(b) considering
a nonincreasing vector b is determined by:

Φ̃(b) = max
1≤j≤|b|

jbj . (6)

Since we take into account the time delay caused by bundling,
we rewrite the profit as:

Φ(b) = max
1≤j≤|b|

jbjλ(j). (7)

Then we compute F ′ = Φ(b′) and F ′′ = Φ(b′′).
If F ′ ≤ F ′′, the tasks in t′′ (with the budgets in b′′) form

the candidate set and winners will be selected from them. The
tasks in t′ form the reference set, and the corresponding value
of F ′ is used as the targeted budget in ExtT (Algorithm 2). If
F ′ > F ′′, t′ becomes the candidate set of tasks, t′′ becomes
the reference and F ′′ is the targeted budget. As will be
discussed later, the segmentation of the candidate set and the
reference set helps to guarantee not only the truthfulness of
our algorithm but also the competitiveness. In ExtT, the largest
j∗ is found in the sorted candidates’ budget vector d such that
the highest j∗ budgets of tasks are at least R

j∗λ(j∗) . Then these
j∗ tasks become the winners of the bundle Bj . Note that in
ExtT, the input budget vector d is part of the budget vector
b in AucB. Therefore, dk in ExtT is not necessarily equal to
bkj . Thus in Line 2 of ExtT, we use t(k)

j to denote the task in
Bj corresponding to the budget dk ∈ d.



Algorithm 2 ExtT: Extracting winning Tasks under target R
Input: The targeted budget R, the sorted budget vector d.
Output: The set of winners W .

1: Find the largest j∗ ∈ [1, 2, ..., |d|], such that j∗dj∗λ(j∗) ≥
R;

2: W ← {t(k)
j |k ≤ j∗};

Algorithm 3 AucAU: Auction for matching Agents and Users
Input: Agents’ budget vector b = [b1, b2, ..., bn] in descend-

ing order, users’ bid vector s = [s1, s2..., sm] in ascending
order.

Output: A matching result between agents and users Λ and
the corresponding payments and rewards.

1: Let k denote the largest index that bk ≥ sk;
2: b′ = [b1, b2, ..., bk]; s′ = [s1, s2, ..., sk];
3: if k = 2 then
4: Run the Vickery auction, output its result, and halt.
5: end if
6: b′′ ← [b1 − sk, b2 − sk, ..., bk−1 − sk];
7: s′′ ← [bk − s1, bk − s2, ..., bk − sk−1];
8: Let 0 ≤ X ≤ 1 be a uniformly random value;
9: if X < 0.5 then

10: (W, ρ)←AucSP(b′′);
11: Agents in W win at pj = ρ+ sk;
12: (W ′, ρ′)←kVickrey(s′, |W|);
13: Users in W ′ win at ri = ρ′;
14: else
15: (W ′, ρ′)←AucSP(s′′);
16: Users in W ′ win at ri = bk − ρ′;
17: (W, ρ)←kVickrey(b′, |W ′|);
18: Agents in W win at pj = ρ;
19: end if
20: Λ = {(a1, u1), (a2, u2), ..., (a|W|, u|W|)};

B. Stage II

After determining the winners and budget of each bundle,
a double auction is performed between users and agents in
Stage II of BundleSense. Existing incentive mechanisms are
mostly applicable to scenarios where users bid unilaterally,
given that the task’s budget is fixed. Differently, agents and
users bid at the same time in our model. The challenge here
is how to maximize the utility of the platform while ensuring
the truthfulness of both agents and users. In addition, it is also
important to ensure a constant competitive ratio between the
proposed mechanism and the optimal mechanism.

Algorithm 3 sketches the proposed auction for matching
agents and users (AucAU). At the beginning of AucAU, we
sort all the budgets of agents in descending order (recorded
as the vector b) and all the bids of users in ascending order
(recorded as the vector s). We then find the largest k such that
bk ≥ sk, reserving the highest k budgets and the lowest k bids.
If k = 2, we run the Vickery auction in b and s, respectively.
The Vickery auction selects the agent a1 whose payment will
be b2 and the user u1 will get a reward s2. If k > 2, we

Algorithm 4 AucSP: Auction for determining winning Set and
winning Price.
Input: The vector in descending order b = {b1, b2, ..., bn}
Output: The set of winners W and the winning price ρ

1: Partition b uniformly at random into two vectors, for each
budget, with probability 1/2 put the budget in b′ and
otherwise b′′.

2: Let ω′, ω′′ be the corresponding vectors of agents or users;
3: F ′ ← Φ̃(b′); F ′′ ← Φ̃(b′′);
4: if F ′ ≤ F ′′ then
5: (W, ρ)←ExtSP(F ′,b′′, ω′′);
6: else if F ′′ < F ′ then
7: (W, ρ)←ExtSP(F ′′,b′, ω′);
8: end if

Algorithm 5 ExtSP: Extracting the best winner Set and
winning Price under target R
Input: The targeted budget R, the sorted budget vector d and

the corresponding set of agents or users ω.
Output: The best winner set W and the winning price ρ.

1: Find the largest k∗ ∈ [1, 2, ..., |ω|] such that k∗dk∗ ≥ R;
2: W ← {ω1, ..., ωk∗}; ρ← R/k∗;

generate two new vectors b′′ = [bj − sk|1 ≤ j ≤ k − 1] and
s′′ = [bk−si|1 ≤ i ≤ k−1]. Both b′′ and s′′ are in descending
order and have k − 1 elements, which are the key to ensure
that the platform is budget balanced. Then we run different
mechanisms strategically based on b′′ and s′′.

Specifically, a random value X is generated first in Line 8 of
AucAU, which determines the execution of different strategies.
If X < 0.5, we run AucSP (Algorithm 4) in b′′, obtaining the
winner set of agentsW and the winning payment pj = ρ+sk.
Then, we run the k-Vickrey auction, which selects |W| users
with the reward ri = r|W|+1. If X > 0.5, we run AucSP
in s′′, obtaining the winning users and the winning reward.
We then select the corresponding number of agents to match
these users. At the end of the algorithm, we can simply match
each selected agent with one selected user randomly from the
winning sets. Each winning task (determined at Stage I) in the
selected bundles will be charged a payment pkj =

bj
wj

, where
wj is the number of winning tasks in the bundle Bj .

Note that the function of AucSP is very similar to AucB
(Algorithm 1). The difference is that, in AucSP, we use the
original optimal single-price auction Φ̃(b) to replace Φ(b) and
use ExtSP (Algorithm 5) to replace ExtT in AucB. The design
of AucSP helps the proposed double auction algorithm AucAU
to suit the situation with two types of bidders. The functions
of ExtSP and ExtT are also similar. However, ExtSP does not
need to consider the function λ(·) and it returns the winners
and the winning price.

C. Mechanism Analysis

1) The Analysis of Stage I:

Lemma 1. AucB is computationally efficient.



Proof: In AucB, sorting t needs O(nj log2(nj)) time.
Since the value of nj is less than M , this process is bounded
by O(M log2(M)). Partitioning t into two sets and the cal-
culation of Φ take O(M) time. In ExtT, the largest j∗ can
be found in O(M) time. Since the for-loop of AucB (Line 1-
Line 11) goes through all the bundles, AucB takes at most
O(nM log2(M)) time.

Lemma 2. AucB is individually rational.

Proof: The task tkj ’s payment pkj is zero if tkj loses at
Stage I or his agent loses the auction at Stage II. Otherwise,
if tkj ∈ Wj and aj ∈ Λa, the task will be charged a payment
of pkj = bj/wj , where bj is equal to the targeted budget
R in ExtT, wj is the largest index in d of ExtT satisfying
dwjwjλ(wj) ≥ R (Line 1 in ExtT). Since d is in descending
order, each winning task tkj satisfies bkj ≥ dwj

. Thus, we have

pkj = bj/wj = R/wj ≤ dwjλ(wj) ≤ bkjλ(wj). (8)

Given that the requester reports his true valuation, i.e., bkj =
vkj , we have vkj λ(wj) − pkj ≥ 0, which completes the proof.

Lemma 3. AucB is truthful.

The proof of Lemma 3 is given in Appendix-A.

Lemma 4. AucB is 4-competitive.

The proof of Lemma 4 is given in Appendix-B. With
Lemma 4, We can show the advantage of AucB compared
with SAMU [11] and SUCP [19]. Specifically, assume that the
budget of tasks in the bundle Bj obeys an uneven distribution:

bkj =

 nj , k = 1, 2,

1, 3 ≤ k ≤ nj ,
(9)

where nj ≥ 3. Let b = {bkj |1 ≤ k ≤ nj}, then we have
Φ(b) = 2njλ(2). According to Lemma 4, AucB(b) ≥ njλ(2)

2 .
According to SUCP, aj randomly chooses k′ ∈ [1, nj ] and uses
bk
′

j as the clearing price, selecting tasks whose budgets are
higher than bk

′

j . If there are ω selected tasks, SUCP’s budget
will be bk

′

j ωλ(ω). When k′ = 1 or k′ = 2, no task’s budget is
higher than nj and bj = 0. Otherwise when k′ ≥ 3, t1j and t2j
will be winning tasks and bj = 2λ(2). Therefore, the expected
budget of aj is P [k′ = 1|k′ = 2] ∗ 0 + P [k′ ≥ 3] ∗ 2λ(2) =
2
nj
∗ 0 +

nj−2
nj
∗ 2λ(2) = (2 − 4

nj
)λ(2). Thus, the ratio of

the expected budget achieved by AucB to that by SUCP is
nj
2

2− 4
nj

>
nj

4 . Similarly, the ratio between AucB and SAMU is

also Ω(nj), which shows that AucB is more competitive.

Theorem 1. AucB is computationally efficient, individually
rational, truthful and constantly competitive.

2) The Analysis of Stage II:

Lemma 5. AucAU is computationally efficient.

Proof: First, sorting the two input vectors is bounded
by O(max{n,m} log2(max{n,m})) time. Converting b and

s into the same length requires O(min{m,n}) time. Then
we analyze the algorithm AucSP and kVickrey. The dif-
ference between AucSP and AucB is that AucSP does not
need to perform sorting and it does not contain for-loop.
Thus, AucSP is bounded by O(min{m,n}) time. kVickrey
can be done in O(1) time. Combining all these steps, it
can be concluded that the time complexity of AucAU is
O(max{m,n} log2(max{m,n}).

Lemma 6. AucAU is individually rational.

Proof: Agents’ or users’ utility will be zero if they lose
the auction. Therefore, we only need to consider the case
when they win. In Algorithm 5, it can be seen that k∗ is
the largest index such that k∗dk∗ ≥ R and dk∗ is the lowest
winning price. If X < 0.5, AucSP(b′′) will be executed
and each winning agent aj has b′′j ≥ dk∗ ≥ R/k∗. His
payment is pj = ρ + sk = R/k∗ + sk ≤ b′′j + sk, where
b′′j = bj − sk. Then we have pj ≤ bj . If X ≥ 0.5, aj’s
payment will be b′|W′|+1. Because b′ is in decreasing order,
this payment is also less than his budget. Combining these
two cases, AucAU satisfies individual rationality for agents.
The same proof process applies for the individual rationality
for users and thus is omitted here.

Lemma 7. AucAU is budget balanced for the platform.

Proof: If X < 0.5, AucSP(b′′) will be executed and |W|
agents will be selected. For |b′′| = k−1, we have |W| < k−1.
In Line 11 of AucAU, each winning agent aj pays an amount
of pj = ρ+ sk, where ρ is a positive value and thus pj > sk.
Then each winning user gets a reward ri = s′|W|+1. Because
|W|+1 < k and s is in increasing order, each reward ri < sk,
namely for any agent-user pair we have pj > sk > ri, which
shows that the platform is budget balanced. The same proof
process applies for the case when X ≥ 0.5 and thus is omitted
here.

Lemma 8. AucAU is double truthful for agents and users.

Proof: In Lemma 3 we have proven that AucB is truthful.
Since AucSP adopts the same framework as AucB, it can be
concluded that AucSP is also truthful. AucAU is a combination
of the truthful Vickery auction [22] and AucSP in terms of
probability. Thus AucAU is also truthful.

Lemma 9. AucAU is 8-competitive.

The proof of Lemma 9 is in Appendix C.

Theorem 2. AucAU is computationally efficient, individually
rational, budget balanced, double truthful and constantly
competitive.

3) The Analysis of BundleSense: As BundleSense is a
sequential combination of AucB and AucAU, it can be directly
inferred that BundleSense satisfies the properties of com-
putational efficiency, individual rationality, budget balance,
and constant competitiveness according to Theorem 1 and
Theorem 2. BundleSense also achieves triple truthfulness with
respect to requesters, agents, and users by these two theorems.
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Fig. 2. Performance comparison.

Theorem 3. BundleSense is computationally efficient, individ-
ually rational, budget balanced, triple truthful and constantly
competitive.

V. PERFORMANCE EVALUATION

A. Simulation Setup

Locations of users and tasks are distributed in a 2D data
space [0, 500]2. We generate 30 users (m = 30) and 200 tasks
(
∑
j nj = 200) in total, varying the maximum bundle capacity

M from 10 to 40 with an increment of 10. The number of
agents (n) is determined by the result of bundling. In stage
I, each task tkj ’s valuation vkj and budget bkj are uniformly
distributed within [5, 10]. In stage II, each user’s reserved price
si and bid vi are uniformly distributed in [20, 30], which are
higher than the budget of any individual task.

B. Evaluation Results

Fig. 2(a)-(b) compare the budgets collected by agents com-
puted by AucB, Φ(2)(b) (the optimal auction introduced in
Appendix-B) and SUCP [19], respectively. SUCP randomly
chooses one task tkj and uses bkj as the clearing price, selecting
all tasks with budgets higher than bkj . If there are κ winning
tasks, the budget for aj will be bkjκλ(κ). It can be seen
that the optimal Φ(2)(b) always obtains the highest budget
compared to the other algorithms and the proposed AucB
outperforms SUCP. The biggest competitive ratio between
AucB and Φ(2)(b) in Fig. 2(a) is 1.22 when M = 10 and
1.17 in Fig. 2(b) when there are 500 tasks. As M increases
or the number of users decreases, the ratio further decreases.
The results show that the competitive ratio between AucB and
the optimal solution is better in practice than the theoretical
result.

Fig. 2(c)-(d) compare the utility of the platform calculated
by AucAU, Φ(2)(b, s) (the optimal auction introduced in
Appendix-C) and VIC, respectively. VIC is a truthful mech-
anism adapted from the basic Vickery mechanism in the
double auction with random selection. Given a nonincreasing
budget vector b and a nondecreasing bid vector s, VIC
finds the largest k∗ such that bk∗ ≥ sk∗ and then chooses
m ∈ [1, 2, ..., k∗ − 1] randomly. The first m agents and m
users win with the payment bm+1 and the reward sm+1,
respectively. It can be seen that Φ(2)(b, s) outperforms the
other mechanisms and AucAU performs better than VIC. In
Fig. 2(c), when M = 40, the gap between AucAU and

Φ(2)(b, s) is maximal, with the competitive ratio of 1.71. In
Fig. 2(d), the maximal competitive ratio is 1.54 when there
are 100 tasks and the ratio decreases when there are more
tasks. Again, the competitive ratio of the proposed AucAU to
the optimal solution in the experiment is much better than the
theoretical result.

VI. CONCLUSION

In this paper, we have proposed a task-bundling-based two-
stage incentive mechanism for MCS. The proposed mechanism
can effectively bridge the gap between task requesters with
low recruitment budgets and mobile users with relatively high
working prices, and thus improve the applicability of MCS
systems. Through theoretical analysis and simulations, the pro-
posed mechanism has been proved that possess the desirable
properties of computational efficiency, individual rationality,
budget balance, truthfulness, and constant competitiveness.

APPENDIX

A. Proof of Lemma 3

We first prove that the function kλ(k) in Algorithm 1 and
Algorithm 2 is monotonically increasing. It can be derived
that the function kλ(k) is monotonically increasing when k ≤
M + 1/2. In Algorithm 1, we uniformly divide the vector b
into two parts b′ and b′′ at random and we have |b′| < M and
|b′′| < M , namely kλ(k) in our algorithm is monotonically
increasing.

Then we are ready to discuss four cases to show that the
task requester cannot improve his utility by submitting an
untruthful value.

Case 1: The requester of tkj fails no matter he bids truthfully
or untruthfully. Here the requester’s utility is always zero.

Case 2: The requester of tkj wins when he bids truthfully
and fails when he bids untruthfully. By the designed rule, the
winner’s utility is nonnegative and the loser’s utility is zero.
Therefore, the requester should bid truthfully here.

Case 3: The requester of tkj fails when he bids truthfully and
wins when he bids untruthfully. By AucB, when the requester
bids truthfully, the first situation of failure is that his bid is in
b′ while F ′ ≤ F ′′ or his bid is in b′′ while F ′′ < F ′. In other
words, tkj is in the reference set, but not in the candidate set for
selection. Without loss of generality, assume that F ′ ≤ F ′′ and
the truthful bid for tkj is the κ-th member of b′, namely b′κ =
vkj . The requester’s only way to improve utility is reporting an
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Fig. 3. Two ways to change bids for tkj .

untruthful bid b′κ′ , such that F ′ > F ′′. Then ExtT(F ′′,b′) will
be executed and tkj will be in the candidate set. The requester
can take the following actions: (i) Reduce the bid b′κ to b′κ′ like
changing b′2 to b′2′ in Fig. 3(a). The budgets for entries 2-4 are
all reduced (b′2 is reduced to b′3, b′3 is reduced to b′4 and b′4 is
reduced to b′2′ ). Thus F ′ cannot be increased and the requester
cannot improve his utility in this way. (ii) Increase the bid
b′κ to b′κ′ like changing b′4 to b′4′ in Fig. 3(b). The budgets
for entries 2-4 are all increased and F ′ may be increased. If
the requester’s untruthful bid makes F ′ > F ′′ successfully,
then there will exist no more than four winners (b′55λ(5) is
still less than F ′′ and he cannot be a winner). Let wj be
the number of winners. tkj ’s payment satisfies pkj = F ′′/wj
and the corresponding utility µkj = b′4λ(wj)− F ′′/wj . In the
original nonincreasing sequence b′, for any wj ≤ 4, we have
F ′′ ≥ b′wj

wjλ(wj) ≥ b′4wjλ(wj). Thus b′4λ(wj) ≤ F ′′/wj .
In other words, the utility is always nonpositive.

The second situation of failure is that, tkj is in the candidate
set for selection, but its budget fails the auction in ExtT. We
also assume that the bid for tkj is the κ-th entry of b′. In
this case, we have F ′ > F ′′ and κ ≥ j∗ + 1, where j∗ is
the largest index in ExtT satisfying j∗dj∗λ(j∗) ≥ R = F ′′.
We consider two actions: (i) Reduce his bid. The requester
cannot win by this mean and winners are always the first j∗

tasks. (ii) Increase the bid b′κ to b′κ′ like changing b′4 to b′4′
in Fig. 3(b). In such case, there will not have more than κ
winners. Let wj ≤ κ be the number of winners, µkj will be
b′κλ(wj)−F ′′/wj . At the start of Appendix A we proved that
kλ(k) in our mechanism is always increasing. Thus, for any
wj ≤ κ, we have F ′′ > b′κκλ(κ) ≥ b′κwjλ(wj). Hence µkj is
always a negative value.

Case 4: The requester of tkj wins no matter he bids truthfully
or untruthfully. Assume that the bid for tkj is the κ-th entry
of b′. In this case, we have F ′ > F ′′ and κ ≤ j∗. The
requester’s utility µkj will be b′κλ(wj) − F ′′/wj , where wj
is the number of winners. Note that F ′′ is calculated by the
reference set and cannot be influenced by tkj . In addition,
a winning untruthful bidding cannot change the number of
winners wj either. The reason is that: Assume in Fig. 3(b),

wj = 4 and vkj = b′2. If his untruthful bid b′2′ ≥ b′4, then the
largest j∗ in ExtT is always four because b′44λ(4) ≥ F ′′. If
b′2′ < b′4, any winning untruthful bid should satisfies b′2′ > b′5,
otherwise b′2′5λ(5) < b′55λ(5) < F ′′ and he will lose. Thus
b′5 < b′2′ < b′4 and b′2′4λ(4) ≥ F ′′, namely there are also four
winners. In summary, the requester cannot improve his utility
in this case.

Combining these four cases, we complete our proof.

B. Proof of Lemma 4

In our discussions to follow, it will be useful to compare
the performance of truthful auctions to that of the optimal
single price omniscient auction (Eq. (7)). Lemma 3.5 in [21]
has shown that no truthful auction can be competitive against
Φ. Thus, we only focus on the scenarios where there are at
least two participants, which are common for MCS systems.
The following lemma can be directly derived from [21].

Lemma 10. Given an input vector b, the optimal single price
omniscient auction Φ(2) that sells at least two items from b
by considering λ(·) is defined by:

Φ(2)(b) = max
2≤j≤|b|

jbjλ(j). (10)

By the lemma, Φ(2) on b finds j ≥ 2 tasks at price p and
Φ(2)(b) = jpλ(j) in our scenario. These j tasks, all with
a budget value at least p, are divided uniformly at random
into b′ and b′′. Let j′ be the number of tasks in b′ and j′′

be the number of tasks in b′′. Since Φ(b′) and Φ(b′′) are
the best possible results on b′ and b′′, respectively, we have
Φ(b′) ≥ pj′λ(j′) and Φ(b′′) ≥ pj′′λ(j′′). Therefore

B

Φ(2)(b)
=

min{Φ(b′),Φ(b′′)}
Φ(2)(b)

≥ min{j′λ(j′), j′′λ(j′′)}
jλ(j)

.

Through the inequality above, we get the competitive ratio:

E[B]

Φ(2)(b)
≥

j−1∑
i=1

min{iλ(i), (j − i)λ(j − i)}
jλ(j)

(
j

i

)
2−j .

Here
(
j
i

)
2−j is the possibility that j′ = i and

min{iλ(i),(j−i)λ(j−i)}
jλ(j) is the corresponding competitive ratio.

Adding up all the possible cases generates the final result.
Next, we analyze the impact of λ(·) on the competitive ratio.

We have
min{j′λ(j′), j′′λ(j′′)}

jλ(j)
≥ min{j′, j′′}min{λ(j′), λ(j′′)}

jλ(j)
.

Compared to competitive ratio min{j′,j′′}
j of RSPE [21], we

add a term greater than or equal to min{λ(j′),λ(j′′)}
λ(j) . For j >

min{j′, j′′} and the function λ(·) is decreasing. Thus we have
min{λ(j′), λ(j′′)}/λ(j) > 1. In other words, by introducing
λ(·), we not only quantify the impact of the time delay caused
by bundling on the actual utility of the task but also decrease
the competitive ratio of auctions.

To summarize, when M = 1, it is equivalent to no bundling
and the competitive ratio is equal to RSPE’s ratio of four. For
any k ≥ 2, the ratio achieves its maximum of four when



k = 2 and M →∞. As k increases or M decreases, the ratio
decreases gradually.

C. Proof of Lemma 9

Similar to the proof of Lemma 4, we consider the compet-
itiveness of AucAU compared with the optimal single price
omniscient mechanism that transfers at least two items [16].

Lemma 11. Given input vectors b and s, the optimal single
price omniscient mechanism for double auction Φ that trans-
fers at least two items is defined by:

Φ(2)(b, s) = max
2≤i≤ε

i(bi − si), (11)

where ε = min{|b|, |s|}.

At the beginning of AucAU, we find the largest k satisfying
bk ≥ sk. If k = 2, AucAU runs Vickrey and is 2-competitive.
If k ≥ 3, let τ ≥ 2 be the number of agent-user pairs selected
by Φ(2)(b, s). Thus,

Φ(2)(b, s) = max
2≤τ≤k

τ(bτ − sτ )

= τ(bk − sτ ) + τ(bτ − sk)− τ(bk − sk).

Let b∗ = [bj−sk|1 ≤ j ≤ k] and s∗ = [bk−si|1 ≤ i ≤ k]. Let
Φ̃(2)(b) = max2≤j≤|b| jbj denotes the optimal single price
omniscient auction that sells at least two items. Since Φ̃(2)(b)
is the best possible results on b, we have Φ̃(2)(b∗) ≥ τ(bτ −
sk) and Φ̃(2)(s∗) ≥ τ(bk − sτ ). Thus

Φ(2)(b, s) ≤ Φ̃(2)(b∗) + Φ̃(2)(s∗)− τ(bk − sk).

Let b′′ (resp. s′′) be b∗ with the lowest budget (resp. the
highest bid) deleted. Namely b′′ = [b1−sk, b2−sk, ..., bk−1−
sk] and s′′ = [bk − s1, bk − s2, ..., bk − sk−1]. Then

Φ̃(2)(b∗) ≤ Φ̃(2)(b′′) + (bk − sk).

We have

Φ(2)(b, s) ≤ Φ̃(2)(b′′) + Φ̃(2)(s′′)− (τ − 2)(bk − sk).

Because τ ≥ 2 and bk ≥ sk, then

Φ(2)(b, s) ≤ Φ̃(2)(b′′) + Φ̃(2)(s′′).

AucAU runs AucSP(b′′) if X < 0.5 otherwise runs
AucSP(s′′). According to Lemma 4, AucB is 4-competitive.
The difference between AucB and AucSP is the use of λ(·).
Without λ(·), AucSP(b) is 4-competitive with Φ̃(2)(b). Thus
the expected utility from cases X < 0.5 and X ≥ 0.5 are
0.5 ∗ Φ̃(2)(b′′)/4 and 0.5 ∗ Φ̃(2)(s′′)/4 respectively. Thus

E[AucAU(b, s)] ≥ 1

8
(Φ̃(2)(b′′) + Φ̃(2)(s′′)) ≥ Φ(2)(b, s)/8,

which completes our proof.
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